2024年新高考数学复习资料专题12 运用空间向量研究立体几何问题(1)(解析版).docx本文件免费下载 【共43页】

2024年新高考数学复习资料专题12 运用空间向量研究立体几何问题(1)(解析版).docx
2024年新高考数学复习资料专题12 运用空间向量研究立体几何问题(1)(解析版).docx
2024年新高考数学复习资料专题12 运用空间向量研究立体几何问题(1)(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题12运用空间向量研究立体几何问题(1)1、(2023年全国甲卷数学(理))在三棱柱中,,底面ABC,,到平面的距离为1.(1)求证:;(2)若直线与距离为2,求与平面所成角的正弦值.【答案】(1)证明见解析(2)【详解】(1)如图,底面,面,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com,又,平面,,平面ACC1A1,又平面,平面平面,过作交于,又平面平面,平面,平面到平面的距离为1,,在中,,设,则,为直角三角形,且,,,,,解得,,(2),,过B作,交于D,则为中点,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com由直线与距离为2,所以,,,在,,延长,使,连接,由知四边形为平行四边形,,平面,又平面,则在中,,,在中,,,,又到平面距离也为1,所以与平面所成角的正弦值为.2、(2023年新课标全国Ⅰ卷)如图,在正四棱柱中,.点分别在棱,上,.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1)证明:;(2)点在棱上,当二面角为时,求.【答案】(1)证明见解析;(2)1【详解】(1)以为坐标原点,所在直线为轴建立空间直角坐标系,如图,则,,,又不在同一条直线上,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com.(2)设,则,设平面的法向量,则,令,得,,设平面的法向量,则,令,得,,,化简可得,,解得或,或,3、(2023年新课标全国Ⅱ卷)如图,三棱锥中,,,,E为BC的中点.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1)证明:;(2)点F满足,求二面角的正弦值.【答案】(1)证明见解析;(2).【详解】(1)连接,因为E为BC中点,,所以①,因为,,所以与均为等边三角形,,从而②,由①②,,平面,所以,平面,而平面,所以.(2)不妨设,,.,,又,平面平面.以点为原点,所在直线分别为轴,建立空间直角坐标系,如图所示:设,设平面与平面的一个法向量分别为,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com二面角平面角为,而,因为,所以,即有,,取,所以;,取,所以,所以,,从而.所以二面角的正弦值为.4、(2023年全国乙卷数学(理)(文))如图,在三棱锥中,,,,,BP,AP,BC的中点分别为D,E,O,,点F在AC上,.(1)证明:平面;(2)证明:平面平面BEF;(3)求二面角的正弦值.【答案】(1)证明见解析;(2)证明见解析;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(3).【详解】(1)连接,设,则,,,则,解得,则为的中点,由分别为的中点,于是,即,则四边形为平行四边形,,又平面平面,所以平面.(2)由(1)可知,则,得,因此,则,有,又,平面,则有平面,又平面,所以平面平面.(3)过点作交于点,设,由,得,且,又由(2)知,,则为二面角的平面角,因为分别为的中点,因此为的重心,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com即有,又,即有,,解得,同理得,于是,即有,则,从而,,在中,,于是,,所以二面角的正弦值为.5、【2022年全国甲卷】在四棱锥P−ABCD中,PD⊥底面ABCD,CD∥AB,AD=DC=CB=1,AB=2,DP=❑√3.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1)证明:BD⊥PA;(2)求PD与平面PAB所成的角的正弦值.【解析】(1)证明:在四边形ABCD中,作DE⊥AB于E,CF⊥AB于F,因为CD/¿AB,AD=CD=CB=1,AB=2,所以四边形ABCD为等腰梯形,所以AE=BF=12,故DE=❑√32,BD=❑√DE2+BE2=❑√3,所以AD2+BD2=AB2,所以AD⊥BD,因为PD⊥平面ABCD,BD⊂平面ABCD,所以PD⊥BD,又PD∩AD=D,所以BD⊥平面PAD,又因PA⊂平面PAD,所以BD⊥PA;(2)解:如图,以点D为原点建立空间直角坐标系,BD=❑√3,则A(1,0,0),B(0,❑√3,0),P(0,0,❑√3),则⃗AP=(−1,0,❑√3),⃗BP=(0,−❑√3,❑√3),⃗DP=(0,0,❑√3),设平面PAB的法向量⃗n=(x,y,z),则有{n→⋅AP→=−x+❑√3z=0n→⋅BP...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2024年新高考数学复习资料专题02 函数的单调性与最值(原卷版).docx
2024年新高考数学复习资料专题02 函数的单调性与最值(原卷版).docx
免费
0下载
2015年高考数学试卷(文)(新课标Ⅱ)(空白卷) (10).pdf
2015年高考数学试卷(文)(新课标Ⅱ)(空白卷) (10).pdf
免费
0下载
2014年高考数学试卷(理)(大纲版)(空白卷).doc
2014年高考数学试卷(理)(大纲版)(空白卷).doc
免费
0下载
2019年高考数学试卷(理)(新课标Ⅲ)(空白卷) (3).pdf
2019年高考数学试卷(理)(新课标Ⅲ)(空白卷) (3).pdf
免费
0下载
2020年高考数学试卷(文)(新课标Ⅲ)(解析卷) (2).pdf
2020年高考数学试卷(文)(新课标Ⅲ)(解析卷) (2).pdf
免费
0下载
2017年高考数学试卷(理)(天津)(解析卷).pdf
2017年高考数学试卷(理)(天津)(解析卷).pdf
免费
0下载
2025年新高考数学复习资料考点05一元二次方程、不等式(2种核心题型+基础保分练+综合提升练+拓展冲刺练)原卷版.docx
2025年新高考数学复习资料考点05一元二次方程、不等式(2种核心题型+基础保分练+综合提升练+拓展冲刺练)原卷版.docx
免费
0下载
2024版《大考卷》全程考评特训卷·数学·文科【统考版】仿真模拟冲刺卷(二).docx
2024版《大考卷》全程考评特训卷·数学·文科【统考版】仿真模拟冲刺卷(二).docx
免费
22下载
2008年高考数学试卷(理)(全国卷Ⅱ)(空白卷).doc
2008年高考数学试卷(理)(全国卷Ⅱ)(空白卷).doc
免费
0下载
高考数学专题09 立体几何(5大易错点分析+解题模板+举一反三+易错题通关)-备战2024年高考数学考试易错题(新高考专用)(解析版).docx
高考数学专题09 立体几何(5大易错点分析+解题模板+举一反三+易错题通关)-备战2024年高考数学考试易错题(新高考专用)(解析版).docx
免费
0下载
1990年江苏高考文科数学真题及答案.doc
1990年江苏高考文科数学真题及答案.doc
免费
5下载
2022届江苏省南京市金陵中学高三下学期复习检测(二)数学试题(原卷版).docx
2022届江苏省南京市金陵中学高三下学期复习检测(二)数学试题(原卷版).docx
免费
0下载
2014年高考数学试卷(理)(重庆)(解析卷).doc
2014年高考数学试卷(理)(重庆)(解析卷).doc
免费
0下载
2019年高考数学试卷(理)(北京)(解析卷).doc
2019年高考数学试卷(理)(北京)(解析卷).doc
免费
0下载
2010年高考数学试卷(文)(江西)(空白卷).doc
2010年高考数学试卷(文)(江西)(空白卷).doc
免费
0下载
1997年四川高考文科数学真题及答案.doc
1997年四川高考文科数学真题及答案.doc
免费
14下载
高中2024版考评特训卷·数学·理科【统考版】单元检测(九).docx
高中2024版考评特训卷·数学·理科【统考版】单元检测(九).docx
免费
0下载
2013年江西省高考数学试卷(理科)往年高考真题.doc
2013年江西省高考数学试卷(理科)往年高考真题.doc
免费
0下载
2025届高中数学一轮复习课件:第七章 第2讲等差数列(共75张ppt).pptx
2025届高中数学一轮复习课件:第七章 第2讲等差数列(共75张ppt).pptx
免费
0下载
2025年新高考数学复习资料第02讲 成对数据的统计分析(五大题型)(讲义)(解析版).docx
2025年新高考数学复习资料第02讲 成对数据的统计分析(五大题型)(讲义)(解析版).docx
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群