2023高考真题 天津数学-试题 .pdf本文件免费下载 【共4页】

2023高考真题 天津数学-试题 .pdf
2023高考真题 天津数学-试题 .pdf
2023高考真题 天津数学-试题 .pdf
2023年天津高考数学真题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知集合1,2,3,4,5,1,3,1,2,4UAB,则∁𝑈𝐵∪𝐴()A.1,3,5B.1,3C.1,2,4D.1,2,4,52.“22ab”是“222abab”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件3.若0.50.60.51.01,1.01,0.6abc,则,,abc的大小关系为()A.cabB.cbaC.abcD.bac4.函数fx的图象如下图所示,则fx的解析式可能为()A.25ee2xxxB.25sin1xxC.25ee2xxxD.25cos1xx5.已知函数fx的一条对称轴为直线2x,一个周期为4,则fx的解析式可能为()A.sin2xB.cos2xC.sin4xD.cos4x6.已知na为等比数列,nS为数列na的前n项和,122nnaS,则4a的值为()A.3B.18C.54D.1527.调查某种群花萼长度和花瓣长度,所得数据如图所示,其中相关系数0.8245r,下列说法正确的是()A.花瓣长度和花萼长度没有相关性B.花瓣长度和花萼长度呈现负相关C.花瓣长度和花萼长度呈现正相关D.若从样本中抽取一部分,则这部分的相关系数一定是0.82458.在三棱锥PABC中,线段PC上的点M满足13PMPC,线段PB上的点N满足23PNPB,则三棱锥PAMN和三棱锥PABC的体积之比为()A.19B.29C.13D.499.双曲线2222(0,0)xyabab的左、右焦点分别为12FF、.过2F作其中一条渐近线的垂线,垂足为P.已知22PF,直线1PF的斜率为24,则双曲线的方程为()A.22184xyB.22148xyC.22142xyD.22124xy二、填空题10.已知i是虚数单位,化简514i23i的结果为_________.11.在6312xx的展开式中,2x项的系数为_________.12.过原点的一条直线与圆22:(2)3Cxy相切,交曲线22(0)ypxp于点P,若8OP,则p的值为_________.三、双空题13.甲乙丙三个盒子中装有一定数量的黑球和白球,其总数之比为5:4:6.这三个盒子中黑球占总数的比例分别为40%,25%,50%.现从三个盒子中各取一个球,取到的三个球都是黑球的概率为_________;将三个盒子混合后任取一个球,是白球的概率为_________.14.在ABC中,60A,1BC,点D为AB的中点,点E为CD的中点,若设,ABaACb,则AE可用,ab表示为_________;若13BFBC,则AEAF的最大值为_________.四、填空题15.若函数2221fxaxxxax有且仅有两个零点,则a的取值范围为_________.五、解答题16.在ABC中,角,,ABC所对的边分別是,,abc.已知39,2,120abA.(1)求sinB的值;(2)求c的值;(3)求sinBC.17.三棱台111ABCABC-中,若1AA面111,,2,1ABCABACABACAAAC,,MN分别是,BCBA中点.(1)求证:1AN//平面1CMA;(2)求平面1CMA与平面11ACCA所成夹角的余弦值;(3)求点C到平面1CMA的距离.18.设椭圆22221(0)xyabab的左右顶点分别为12,AA,右焦点为F,已知123,1AFAF.(1)求椭圆方程及其离心率;(2)已知点P是椭圆上一动点(不与端点重合),直线2AP交y轴于点Q,若三角形1APQ的面积是三角形2AFP面积的二倍,求直线2AP的方程.19.已知na是等差数列,255316,4aaaa.(1)求na的通项公式和1212nniia.(2)已知nb为等比数列,对于任意*Nk,若1221kkn,则1knkbab,(Ⅰ)当2k时,求证:2121kkkb;(Ⅱ)求nb的通项公式及其前n项和.20.已知函数11ln12fxxx.(1)求曲线yfx在2x处切线的斜率;(2)当0x时,证明:1fx;(3)证明:51ln!ln162nnnn.

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
高中数学·选择性必修·第一册·湘教版课时作业word  课时作业(三十七) 二项式定理(2).docx
高中数学·选择性必修·第一册·湘教版课时作业word 课时作业(三十七) 二项式定理(2).docx
免费
26下载
2019年上海市青浦区高考数学一模试卷(含解析版).doc
2019年上海市青浦区高考数学一模试卷(含解析版).doc
免费
0下载
2024年新高考数学复习资料专题22 计数原理与二项式定理(原卷版).docx
2024年新高考数学复习资料专题22 计数原理与二项式定理(原卷版).docx
免费
0下载
2016年江苏省高考数学试卷.doc
2016年江苏省高考数学试卷.doc
免费
0下载
高中数学高考数学10大专题技巧--专题05 立体几何中的截面问题(学生版).docx.doc
高中数学高考数学10大专题技巧--专题05 立体几何中的截面问题(学生版).docx.doc
免费
0下载
2024届高考数学考向核心卷—新课标版 答案.pdf
2024届高考数学考向核心卷—新课标版 答案.pdf
免费
12下载
2013年高考数学试卷(理)(陕西)(解析卷).doc
2013年高考数学试卷(理)(陕西)(解析卷).doc
免费
0下载
2000年青海高考文科数学真题及答案.doc
2000年青海高考文科数学真题及答案.doc
免费
14下载
精品解析:江苏省张家港市2023-2024学年高三下学期2月阶段性调研测试数学试卷(原卷版).docx
精品解析:江苏省张家港市2023-2024学年高三下学期2月阶段性调研测试数学试卷(原卷版).docx
免费
0下载
2025年新高考数学复习资料专题突破卷14 累加、累乘、构造法求数列通项公式(解析版).docx
2025年新高考数学复习资料专题突破卷14 累加、累乘、构造法求数列通项公式(解析版).docx
免费
0下载
高中数学·必修第一册(湘教版)课时作业(word)  课时作业(四十九) .docx
高中数学·必修第一册(湘教版)课时作业(word) 课时作业(四十九) .docx
免费
30下载
2023年高考数学试卷(新课标Ⅱ卷)(解析卷) (5).docx
2023年高考数学试卷(新课标Ⅱ卷)(解析卷) (5).docx
免费
0下载
2023《微专题·小练习》·数学·理科·L-3专练46 高考大题专练(四) 立体几何的综合运用.docx
2023《微专题·小练习》·数学·理科·L-3专练46 高考大题专练(四) 立体几何的综合运用.docx
免费
13下载
2018年高考数学试卷(上海)(秋考)(空白卷).pdf
2018年高考数学试卷(上海)(秋考)(空白卷).pdf
免费
0下载
高中数学·必修第二册(RJ-A版)课时作业 WORD  详解答案.doc
高中数学·必修第二册(RJ-A版)课时作业 WORD 详解答案.doc
免费
27下载
上海市各区高三数学一模模块汇编解析几何汇编--教师版.docx
上海市各区高三数学一模模块汇编解析几何汇编--教师版.docx
免费
0下载
2024年新高考数学复习资料易错点10  立体几何-备战2022年高考数学考试易错题(新高考专用)(学生版) .docx
2024年新高考数学复习资料易错点10 立体几何-备战2022年高考数学考试易错题(新高考专用)(学生版) .docx
免费
0下载
2012年上海市杨浦区高考数学一模试卷(理科).doc
2012年上海市杨浦区高考数学一模试卷(理科).doc
免费
0下载
高中数学·必修第四册·RJ-B课时作业(word)  课时作业 4.docx
高中数学·必修第四册·RJ-B课时作业(word) 课时作业 4.docx
免费
10下载
2015年上海市杨浦区高考数学二模试卷(文科).doc
2015年上海市杨浦区高考数学二模试卷(文科).doc
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群