2023《微专题·小练习》·数学·文科·L-2详解答案.docx本文件免费下载 【共100页】

2023《微专题·小练习》·数学·文科·L-2详解答案.docx
2023《微专题·小练习》·数学·文科·L-2详解答案.docx
2023《微专题·小练习》·数学·文科·L-2详解答案.docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(这是边文,请据需要手工删加)小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com数学(文科)小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com详解答案专练1集合及其运算1.A由题意,得M∩N={2,4}.故选A.2.C因为集合A={x|0≤x≤2},B={1,2,3},所以A∩B={1,2},所以(A∩B)∪C={1,2,3,4}.3.D A={x∈N|1≤x≤3}={1,2,3},B={x|x2-6x+5<0}={x|1<x<5},∴A∩B={2,3}.4.B由log2(x+1)<3,可得0<x+1<8,解得-1<x<7,所以集合A={x|1≤x≤27},B={x|-1<x<7},可得∁RB={x|x≤-1或x≥7},所以A∩(∁RB)={x|7≤x≤27}=[7,27].5.A解法一因为集合M={1,2},N={3,4},所以M∪N={1,2,3,4}.又全集U={1,2,3,4,5},所以∁U(M∪N)={5}.解法二因为∁U(M∪N)=(∁UM)∩(∁UN),∁UM={3,4,5},∁UN={1,2,5},所以∁U(M∪N)={3,4,5}∩{1,2,5}={5}.6.C因为A,B均为R的子集,且A∩(∁RB)=A,所以A⊆∁RB,所以A∩B=∅.7.D A={x∈N*|x<3}={1,2},A∪B={1,2,3},∴集合B所有可能的结果为:{3},{1,3},{2,3},{1,2,3},∴满足条件的集合B共有4个.8.B因为A={x|-1<x<2},B={x|x>1},所以阴影部分表示的集合为A∩(∁RB)={x|-1<x≤1}.9.CA={x|log2x<1}=(0,2),B={y|y=}=[0,+∞),∴A∩B=(0,2).10.答案:3解析:由U={1,2,a2-2a-3},∁UA={0}可得a2-2a-3=0.又A={|a-2|,2},故|a-2|=1,所以得解得a=3.11.答案:-1或2解析: B⊆A,∴a2-a+1=3或a2-a+1=a,由a2-a+1=3,得a=-1或a=2,符合题意.当a2-a+1=a时,得a=1,不符合集合的互异性,故舍去,∴a的值为-1或2.12.答案:±2或-1解析:若k+2=0,则A={x|-4x+1=0},符合题意;若k+2≠0,由题意得得k=2或k=-1,综上得k=±2或k=-1.13.A因为A={x∈Z|-3≤x<4}={-3,-2,-1,0,1,2,3},log2(x+2)<2,即log2(x+2)<log24,故0<x+2<4,解得-2<x<2,即B={x|-2<x<2},则A∩B={-1,0,1},其包含3个元素.14.A解不等式可得B={x|x<0或x>1},由题意可知阴影部分表示的集合为∁U(A∩B)∩(A∪B),且A∩B={x|1<x≤2},A∪B=R,∴∁U(A∩B)={x|x≤1或x>2},所以∁U(A∩B)∩(A∪B)={x|x≤1或x>2}.15.C解不等式>0,则(x+4)(x-1)>0,解得:x<-4或x>1,即A={x|x<-4或x>1},于是得∁RA={x|-4≤x≤1},而B={-2,-1,1,2},所以(∁RA)∩B={-2,-1,1}.16.C因为y=2cosx的最小正周期T==6,且cos=,cos=cos(π-)=-cos=-,cos=-1,cos=cos(π+)=-cos=-,cos=cos(2π-)=cos=,cos=1,cos=cos(2π+)=cos=,…,所以A=={1,-1,-2,2},又B={x|x2-2x-3<0}={x|-1<x<3},所以A∩B={1,2}.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专练2简单的逻辑联结词、全称量词与存在量词1.B因为命题p:∃x0<-1,2x0-x0-1<0,则¬p:∀x<-1,2x-x-1≥0.2.D令f(x)=sinx-x(x>0),则f′(x)=cosx-1≤0,所以f(x)在(0,+∞)上为减函数,所以f(x)<f(0),即f(x)<0,即sinx<x(x>0),故∀x∈(0,+∞),sinx<x,所以D为假命题.3.A由x3<x2,得x2(x-1)<0,解得x<0或0<x<1,在这个范围内没有自然数,∴命题p为假命题. 对任意的a∈(0,1)∪(1,+∞),均有f(2)=loga1=0,∴命题q为真命题.4.C由¬(p∨q)为假命题知p∨q为真命题,∴p,q中至少有一个为真命题.5.B 当x>0时,x+1>1,∴ln(x+1)>0,故命题p为真命题,当a=-1,b=-2时,a2<b2,故q为假命题,故p∧q为假命题.p∧(¬q)为真命题,(¬p)∧q为假命题,(¬p)∧(...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2009年江苏高考数学试卷及答案.doc
2009年江苏高考数学试卷及答案.doc
免费
17下载
高中数学高考数学10大专题技巧--专题08 等差数列的判定与证明(学生版).docx.doc
高中数学高考数学10大专题技巧--专题08 等差数列的判定与证明(学生版).docx.doc
免费
0下载
第04讲 随机事件、频率与概率(六大题型)(课件)-2025年高考数学一轮复习讲练测(新教材新高考).pptx
第04讲 随机事件、频率与概率(六大题型)(课件)-2025年高考数学一轮复习讲练测(新教材新高考).pptx
免费
0下载
2024版《大考卷》全程考评特训卷·数学·文科【统考版】点点练 9.docx
2024版《大考卷》全程考评特训卷·数学·文科【统考版】点点练 9.docx
免费
1下载
高中数学·必修第二册·湘教版课时作业WORD  课时作业(二十九).docx
高中数学·必修第二册·湘教版课时作业WORD 课时作业(二十九).docx
免费
19下载
高中数学高考数学10大专题技巧--专题37 讨论函数零点或方程根的个数问题(学生版).docx.doc
高中数学高考数学10大专题技巧--专题37 讨论函数零点或方程根的个数问题(学生版).docx.doc
免费
0下载
2024年新高考数学复习资料重难点5-2 数列前n项和的求法(8题型+满分技巧+限时检测)(解析版).docx
2024年新高考数学复习资料重难点5-2 数列前n项和的求法(8题型+满分技巧+限时检测)(解析版).docx
免费
0下载
2018年高考数学试卷(文)(新课标Ⅰ)(解析卷) (3).pdf
2018年高考数学试卷(文)(新课标Ⅰ)(解析卷) (3).pdf
免费
0下载
2024年新高考数学复习资料第01讲 函数的概念(练习)(解析版).docx
2024年新高考数学复习资料第01讲 函数的概念(练习)(解析版).docx
免费
0下载
2004年山东高考理科数学真题及答案.doc
2004年山东高考理科数学真题及答案.doc
免费
4下载
2003年重庆高考文科数学真题及答案.doc
2003年重庆高考文科数学真题及答案.doc
免费
23下载
1990年广西高考理科数学真题及答案.doc
1990年广西高考理科数学真题及答案.doc
免费
20下载
2013年高考数学试卷(理)(重庆)(空白卷).pdf
2013年高考数学试卷(理)(重庆)(空白卷).pdf
免费
0下载
1999年广西高考理科数学真题及答案.doc
1999年广西高考理科数学真题及答案.doc
免费
15下载
2013年江西省高考数学试卷(文科)往年高考真题.doc
2013年江西省高考数学试卷(文科)往年高考真题.doc
免费
0下载
2022·微专题·小练习·数学·理科【统考版】专练43.docx
2022·微专题·小练习·数学·理科【统考版】专练43.docx
免费
25下载
2014年全国统一高考数学试卷(文科)(大纲版)(原卷版).doc
2014年全国统一高考数学试卷(文科)(大纲版)(原卷版).doc
免费
7下载
2024年新高考数学复习资料跟踪训练03 函数的奇偶性、周期性、对称性(原卷版).docx
2024年新高考数学复习资料跟踪训练03 函数的奇偶性、周期性、对称性(原卷版).docx
免费
0下载
2024年新高考数学复习资料第05讲 一元二次不等式与其他常见不等式解法(讲义)(原卷版).docx
2024年新高考数学复习资料第05讲 一元二次不等式与其他常见不等式解法(讲义)(原卷版).docx
免费
0下载
2024版《微专题》·数学(理 )·统考版专练 52.docx
2024版《微专题》·数学(理 )·统考版专练 52.docx
免费
23下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群