小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com大题06新定义题型继2024年九省联考的第19题考查了新定义问题,已有部分地区考试采用了该结构考试。2024年的新高考试卷第19题极大可能也会考查新定义问题,难度较大。新定义题型内容新颖,题目中常常伴随有“定义”“规定”等字眼,题目一般使用抽象的语言给出新定义、运算或符号,没有过多的解释说明,要求考生自己仔细揣摩、体会和理解定义的含义,在阅读新定义要求后马上运用它解决相关问题,考查考生的理解与运算、信息迁移的能力。题型一:集合的新定义问题(2024·广东·惠州一中校联考模拟预测)已知集合中含有三个元素,同时满足①;②;③为偶数,那么称集合具有性质.已知集合,对于集合的非空子集,若中存在三个互不相同的元素,使得均属于,则称集合是集合的“期待子集”.(1)试判断集合是否具有性质,并说明理由;(2)若集合具有性质,证明:集合是集合的“期待子集”;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(3)证明:集合具有性质的充要条件是集合是集合的“期待子集”.集合新定义问题的方法和技巧:(1)可通过举例子的方式,将抽象的定义转化为具体的简单的应用,从而加深对信息的理解;(2)可用自己的语言转述新信息所表达的内容,如果能清晰描述,那么说明对此信息理解的较为透彻;(3)发现新信息与所学知识的联系,并从描述中体会信息的本质特征与规律;(4)如果新信息是课本知识的推广,则要关注此信息与课本中概念的不同之处,以及什么情况下可以使用书上的概念.1.(2023·北京·北京四中校考模拟预测)已知集合,若集合,且对任意的,存在,,使得(其中),则称集合为集合的一个元基底.(1)分别判断下列集合是否为集合的一个二元基底,并说明理由;①,;②,.(2)若集合是集合的一个元基底,证明:;(3)若集合为集合的一个元基底,求出的最小可能值,并写出当取最小值时的一个基底.2.(2024·北京海淀·高三人大附中校考开学考试)设为正整数,集合.任取集合A中的个元素(可以重复),,,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com,其中.(1)若,,直接写出;(2)对于,,,证明:;(3)对于某个正整数,若集合A满足:对于A中任意个元素,都有,则称集合A具有性质.证明:若,集合A具有性质,则,集合A都具有性质.题型二:函数与导数的新定义问题(2024·陕西安康·高三校联考阶段练习)记函数的导函数为,的导函数为,设是的定义域的子集,若在区间上,则称在上是“凸函数”.已知函数.(1)若在上为“凸函数”,求的取值范围;(2)若,判断在区间上的零点个数.函数新定义问题,命题新颖,常常考虑函数的性质,包括单调性,奇偶性,值域等,且存在知识点交叉,会和导函数,数列等知识进行结合,很好的考虑了知识迁移,综合运用能力,对于此类问题,一定要解读出题干中的信息,正确理解问题的本质,转化为熟悉的问题来进行解决。小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com1.(2023·上海浦东新·统考二模)设是坐标平面上的一点,曲线是函数的图象.若过点恰能作曲线的条切线,则称是函数的“度点”.(1)判断点与点是否为函数的1度点,不需要说明理由;(2)已知,.证明:点是的0度点;(3)求函数的全体2度点构成的集合.2.(2024·广东茂名·统考一模)若函数在上有定义,且对于任意不同的,都有,则称为上的“类函数”.(1)若,判断是否为上的“3类函数”;(2)若为上的“2类函数”,求实数的取值范围;(3)若为上的“2类函数”,且,证明:,,.题型三:复数与不等式的新定义问题(2024·全国·高三校联考竞赛)设M是由复数组成的集合,对M的一个子集A,若存在复平面上的一个圆,使得A的所有数在复平面上对应的点都在圆内或圆周上,且中的数对应的点都在圆外,则称A是一个M的“可分离子集”.(1)判断是否是的“可分离子集”,并说明理由;(2)设复数z满足,其中分别表示z的实部和虚部.证明:是小学、初中、高中各种试卷真题知识归纳文案合...