小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)第13练函数与方程及函数模型的应用(精练)1理解函数的零点与方程的解的关系.2.了解函数零点存在定理,并能简单应用.3.了解用二分法求方程的近似解.4.在实际情境中,会选择合适的函数类型刻画现实问题的变化规律.5.结合现实情境中的具体问题,利用计算工具,比较对数函数、一元一次函数、指数函数增长速度的差异,理解“对数增长”“直线上升”“指数爆炸”等术语的现实含义.一、多选题1.(2023·全国·高考真题)噪声污染问题越来越受到重视.用声压级来度量声音的强弱,定义声压级,其中常数是听觉下限阈值,是实际声压.下表为不同声源的声压级:声源与声源的距离声压级燃油汽车10混合动力汽车10电动汽车1040已知在距离燃油汽车、混合动力汽车、电动汽车处测得实际声压分别为,则().A.B.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comC.D.【答案】ACD【分析】根据题意可知,结合对数运算逐项分析判断.【详解】由题意可知:,对于选项A:可得,因为,则,即,所以且,可得,故A正确;对于选项B:可得,因为,则,即,所以且,可得,当且仅当时,等号成立,故B错误;对于选项C:因为,即,可得,即,故C正确;对于选项D:由选项A可知:,且,则,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com即,可得,且,所以,故D正确;故选:ACD.二、填空题2.(2023·天津·高考真题)设,函数,若恰有两个零点,则的取值范围为.【答案】【分析】根据绝对值的意义,去掉绝对值,求出零点,再根据根存在的条件即可判断的取值范围.【详解】(1)当时,,即,若时,,此时成立;若时,或,若方程有一根为,则,即且;若方程有一根为,则,解得:且;若时,,此时成立.(2)当时,,即,若时,,显然不成立;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com若时,或,若方程有一根为,则,即;若方程有一根为,则,解得:;若时,,显然不成立;综上,当时,零点为,;当时,零点为,;当时,只有一个零点;当时,零点为,;当时,只有一个零点;当时,零点为,;当时,零点为.所以,当函数有两个零点时,且.故答案为:.【点睛】本题的解题关键是根据定义去掉绝对值,求出方程的根,再根据根存在的条件求出对应的范围,然后根据范围讨论根(或零点)的个数,从而解出.3.(2023·全国·高考真题)已知函数在区间有且仅有3个零点,则的取值范围是.【答案】【分析】令,得有3个根,从而结合余弦函数的图像性质即可得解.【详解】因为,所以,令,则有3个根,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com令,则有3个根,其中,结合余弦函数的图像性质可得,故,故答案为:.4.(2022·天津·高考真题)设,对任意实数x,记.若至少有3个零点,则实数的取值范围为.【答案】【分析】设,,分析可知函数至少有一个零点,可得出,求出的取值范围,然后对实数的取值范围进行分类讨论,根据题意可得出关于实数的不等式,综合可求得实数的取值范围.【详解】设,,由可得.要使得函数至少有个零点,则函数至少有一个零点,则,解得或.①当时,,作出函数、的图象如下图所示:此时函数只有两个零点,不合乎题意;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com②当时,设函数的两个零点分别为、,要使得函数至少有个零点,则,所以,,解得;③当时,,作出函数、的图象如下图所示:由图可知,函数的零点个数为,合乎题意;④当时,设函数的两个零点分别为、,要使得函数至少有个零点,则,可得,解得,此时.综上所述,实数的取值范围是.故答案为:.【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变...