2024年新高考数学复习资料第56讲 立体几何中的切接问题(微专题)(原卷版).docx本文件免费下载 【共5页】

2024年新高考数学复习资料第56讲 立体几何中的切接问题(微专题)(原卷版).docx
2024年新高考数学复习资料第56讲 立体几何中的切接问题(微专题)(原卷版).docx
2024年新高考数学复习资料第56讲 立体几何中的切接问题(微专题)(原卷版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com第56讲立体几何中的切接问题(微专题)题型一、几何体的外接球解决多面体的外接球问题,关键是确定球心的位置,方法是先选择多面体中的一面,确定此面外接圆的圆心,再过圆心作垂直此面的垂线,则球心一定在此垂线上,最后根据其他顶点确定球心的准确位置.对于特殊的多面体还可采用补成正方体或长方体的方法找到球心位置.例1、(2023·安徽·统考一模)在三棱锥中,底面,则三棱锥外接球的表面积为()A.B.C.D.变式1、(2022·江苏海门·高三期末)已知正四棱锥的底面边长为,侧棱PA与底面ABCD所成的角为45°,顶点P,A,B,C,D在球O的球面上,则球O的体积是()A.16πB.C.8πD.变式2、(2023·山西临汾·统考一模)《九章算术·商功》提及一种称之为“羡除”的几何体,刘徽对此几何体作注:“羡除,隧道也其所穿地,上平下邪.似两鳖臑夹一堑堵,即羡除之形.”羡除即为:三个面为梯形或平行四边形(至多一个侧面是平行四边形),其余两个面为三角形的五面几何体.现有羡除如图所示,底面为正方形,,其余棱长为2,则羡除外接球体积与羡除体积之比为()A.B.C.D.变式3、(2022·广东罗湖·高三期末)在中,,且,,若将沿AC边上的中线BD折起,使得平面平面BCD.点E在由此得到的四面体ABCD的棱AC上运动,则下列结论正确的为()A.B.四面体ABCD的体积为小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comC.存在点E使得的面积为D.四面体ABCD的外接球表面积为变式4、(2022·河北张家口·高三期末)在《九章算术》中,将四个面都为直角三角形的四面体称之为鳖臑(biēnào).如图,三棱锥为一个鳖臑,其中平面,,,,为垂足,则()A.平面B.为三棱锥的外接球的直径C.三棱锥的外接球体积为D.三棱锥的外接球体积与三棱锥的外接球体积相等变式5、(2022·江苏如皋·高三期末)已知三棱锥D-ABC中,AB=AC=AD=1,∠DAB=∠DAC=,∠BAC=,则点A到平面BCD的距离为_________,该三棱锥的外接球的体积为_________.变式6、(2022·广东潮州·高三期末)在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,在鳖臑A-BCD中,AB平面BCD,CDAD,AB=BD=,已知动点E从C点出发,沿外表面经过棱AD上一点到点B的最短距离为,则该棱锥的外接球的表面积为_________.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com变式7、(2022·广东·铁一中学高三期末)已知四面体中,,,,则其外接球的体积为______.变式8、(2022·河北保定·高三期末)如图,是边长为4的等边三角形的中位线,将沿折起,使得点与重合,平面平面,则四棱雉外接球的表面积是___________.题型二、几何体的内切球求解多面体的内切球的问题,一般是将多面体分割为以球心为顶点,多面体的各面为底面的棱锥,利用多面体的体积等于各棱锥的体积之和求内切球的半径.例2、(2021·山东高三其他模拟)如图所示的由4个直角三角形组成的各边长均为1的六边形是某棱锥的侧面展开图,则该棱锥的内切球半径为_________.变式1、【2022·广东省珠海市第二中学10月月考】已知三棱锥的所有棱长都相等,现沿三条侧棱剪开,将其表面展开成一个平面图形,若这个平面图形外接圆的半径为,则三棱锥的内切球的体积为_______小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com变式2、【2022·广东省珠海市第二中学10月月考】已知三棱锥的所有棱长都相等,现沿三条侧棱剪开,将其表面展开成一个平面图形,若这个平面图形外接圆的半径为,则三棱锥的内切球的体积为_______变式3、(2023·江苏连云港·统考模拟预测)已知圆锥内切球(与圆锥侧面、底面均相切的球)的半径为2,当该圆锥的表面积最小时,其外接球的表面积为()A.B.C.D.变式4、(2022·湖北武昌·高三期末)已知四面体ABCD的一个平面展开图如图所示,其中四边形AEFD是边长为的菱形,B,C分别为AE,FD的中点,,则在该四面体中()A.B.BE与平面DCE所成角的余弦值为C.四面体ABCD的内切球半径为D.四面体AB...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
高中数学·必修第一册(北师大版)课时作业WORD  章末质量检测(五).doc
高中数学·必修第一册(北师大版)课时作业WORD 章末质量检测(五).doc
免费
15下载
精品解析:上海市崇明区2024届高三二模数学试题(原卷版).docx
精品解析:上海市崇明区2024届高三二模数学试题(原卷版).docx
免费
0下载
2022年高考数学试卷(新高考Ⅱ卷)(解析卷).pdf
2022年高考数学试卷(新高考Ⅱ卷)(解析卷).pdf
免费
0下载
2023《大考卷》二轮专项分层特训卷•数学·文科【统考版】热点问题专练 7.docx
2023《大考卷》二轮专项分层特训卷•数学·文科【统考版】热点问题专练 7.docx
免费
28下载
2024年高考数学一轮复习(新高考版) 第6章 §6.5 数列求和.pptx
2024年高考数学一轮复习(新高考版) 第6章 §6.5 数列求和.pptx
免费
0下载
第04讲+指数与指数函数(八大题型)(课件)-2025年高考数学一轮复习讲练测(新教材新高考).pptx
第04讲+指数与指数函数(八大题型)(课件)-2025年高考数学一轮复习讲练测(新教材新高考).pptx
免费
0下载
2025年新高考数学复习资料第二章 一元二次函数、方程和不等式(综合检测)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)解析版.docx
2025年新高考数学复习资料第二章 一元二次函数、方程和不等式(综合检测)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)解析版.docx
免费
0下载
高中2023《微专题·小练习》·数学·理科·L-3专练7 二次函数与幂函数.docx
高中2023《微专题·小练习》·数学·理科·L-3专练7 二次函数与幂函数.docx
免费
0下载
高中2022·微专题·小练习·数学·理科【统考版】专练37 .docx
高中2022·微专题·小练习·数学·理科【统考版】专练37 .docx
免费
0下载
2024年新高考数学复习资料第四章 导数及其应用(综合检测)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
2024年新高考数学复习资料第四章 导数及其应用(综合检测)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
免费
0下载
2016年高考数学真题( 江苏自主命题).doc
2016年高考数学真题( 江苏自主命题).doc
免费
7下载
2024版《大考卷》全程考评特训卷·数学【新教材】考点练3.docx
2024版《大考卷》全程考评特训卷·数学【新教材】考点练3.docx
免费
27下载
高中2024版《微专题》·数学·新高考专练 1.docx
高中2024版《微专题》·数学·新高考专练 1.docx
免费
0下载
2009年高考数学真题(理科)(安徽自主命题).doc
2009年高考数学真题(理科)(安徽自主命题).doc
免费
5下载
2015年湖南省高考数学试卷(文科).doc
2015年湖南省高考数学试卷(文科).doc
免费
0下载
思想04+运用转化与化归的思想方法解题(4大核心考点)(课件)-2024年高考数学二轮复习讲练测(新教材新高考).pptx
思想04+运用转化与化归的思想方法解题(4大核心考点)(课件)-2024年高考数学二轮复习讲练测(新教材新高考).pptx
免费
0下载
1999年高考数学真题(文科)(湖北自主命题).doc
1999年高考数学真题(文科)(湖北自主命题).doc
免费
9下载
2025年新高考数学复习资料专题14 导数与函数的单调性(九大题型+模拟精练)(解析版).docx
2025年新高考数学复习资料专题14 导数与函数的单调性(九大题型+模拟精练)(解析版).docx
免费
0下载
2019年高考数学试卷(上海)(秋考)(解析卷).doc
2019年高考数学试卷(上海)(秋考)(解析卷).doc
免费
0下载
2008年高考理科数学试题(天津卷)及参考答案.docx
2008年高考理科数学试题(天津卷)及参考答案.docx
免费
17下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群