2024年新高考数学复习资料“8+3+3”小题强化训练(11)(新高考九省联考题型)(解析版).docx本文件免费下载 【共9页】

2024年新高考数学复习资料“8+3+3”小题强化训练(11)(新高考九省联考题型)(解析版).docx
2024年新高考数学复习资料“8+3+3”小题强化训练(11)(新高考九省联考题型)(解析版).docx
2024年新高考数学复习资料“8+3+3”小题强化训练(11)(新高考九省联考题型)(解析版).docx
小、初中、高中各卷知文案合同学种试真题识归纳PPT等免下费载www.doc985.com2024届高三二轮复习“8+3+3”小题强化训练(11)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.用分层抽样的方法从某社区的500名男居民和700名女居民中选取12人参与社区服务满意度调研,则女居民比男居民多选取()A.8人B.6人C.4人D.2人【答案】D【解析】由题可知,男居民选取人,女居民选取人,则女居民比男居民多选取2人.故选:D.2.若复数满足,则在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】由,对应点为在第一象限.故选:A3.从6名女生3名男生中选出2名女生1名男生,则不同的选取方法种数为()A.33B.45C.84D.90【答案】B【解析】.故选:B4.已知向量与是非零向量,且满足在上的投影向量为,,则与的夹角为()A.B.C.D.【答案】A【解析】设与的夹角为,在上的投影向量为所以,所以,所以为钝角,且.故选:A小、初中、高中各卷知文案合同学种试真题识归纳PPT等免下费载www.doc985.com5.函数的部分图像大致为()A.B.C.D.【答案】A【解析】由,得,则的定义域是,排除B;分子分母同时除以得,,所以函数是奇函数,排除C;, ,∴,排除D,故选:A.6.“方斗”常作为盛米的一种容器,其形状是一个上大下小的正四棱台,现有“方斗”容器如图所示,已知,,现往容器里加米,当米的高度是“方斗”高度的一半时,用米,则该“方斗”可盛米的总质量为()小、初中、高中各卷知文案合同学种试真题识归纳PPT等免下费载www.doc985.comA.B.C.D.【答案】D【解析】设线段、、、的中点分别为、、、,如下图所示:易知四边形为等腰梯形,因为线段、的中点分别为、,则,设棱台的高为,体积为,则棱台的高为,设其体积为,则,则,所以,,所以,该“方斗”可盛米的总质量为.故选:D.7.定义:满足为常数,)的数列称为二阶等比数列,为二阶公比.已知二阶等比数列的二阶公比为,则使得成立的最小正整数为()A.7B.8C.9D.10【答案】B【解析】由题意知二阶等比数列的二阶公比为,则,故,将以上各式累乘得:,小、初中、高中各卷知文案合同学种试真题识归纳PPT等免下费载www.doc985.com故,令,由于,故,即,又的值随n的增大而增大,且,当时,,当时,,故n的最小值为8,故选:B8.已知函数在区间上的最小值恰为,则所有满足条件的的积属于区间()A.B.C.D.【答案】C【解析】当时,因为此时的最小值为,所以,即.若,此时能取到最小值,即,代入可得,满足要求;若取不到最小值,则需满足,即,在上单调递减,所以存在唯一符合题意;所以或者,所以所有满足条件的的积属于区间,故选:C二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知分别为随机事件的对立事件,满足,则下列叙述可以说明事件A,B为相互独立事件的是()A.B.C.D.【答案】ABD【解析】对于A,由,得即,所以相互独小、初中、高中各卷知文案合同学种试真题识归纳PPT等免下费载www.doc985.com立,故A正确;对于B,由,得,又,所以,得即,所以相互独立,所以相互独立,故B正确;对于C,由,,得,由得,故,所以事件A,B相互独立错误,故C错误;对于D,由,得,又,所以,所以相互独立,故D正确.故选:ABD.10.已知定义域在R上的函数满足:是奇函数,且,当,,则下列结论正确的是()A.的周期B.C.在上单调递增D.是偶函数【答案】BC【解析】由于是奇函数,所以,则又,则,所以,所以的周期为8,A错误,,,故B正确,根据函数的性质结合,,作出函数图象为:由图象可知:在上单调递增,C正确,由于的图象不关于对称,所以不是偶函数,D错误故选:BC小、初中、高中各卷知文案合同学种试真题识归纳PPT等免下费载www.doc985.com11.在平面直角坐标系中,已知双曲线的右顶点为A,直线l与以O为圆心,为半径的圆相切,切点为P.则()A.双曲线C的离心离为B.当直线与双曲线C的一条渐近线重合时,直线l过双曲线C的一个焦点C.当直线l与双曲线C的一条渐近线平...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
高中数学·选择性必修·第一册·湘教版课时作业word  课时作业(三十七) 二项式定理(2).docx
高中数学·选择性必修·第一册·湘教版课时作业word 课时作业(三十七) 二项式定理(2).docx
免费
26下载
2019年上海市青浦区高考数学一模试卷(含解析版).doc
2019年上海市青浦区高考数学一模试卷(含解析版).doc
免费
0下载
2024年新高考数学复习资料专题22 计数原理与二项式定理(原卷版).docx
2024年新高考数学复习资料专题22 计数原理与二项式定理(原卷版).docx
免费
0下载
2016年江苏省高考数学试卷.doc
2016年江苏省高考数学试卷.doc
免费
0下载
高中数学高考数学10大专题技巧--专题05 立体几何中的截面问题(学生版).docx.doc
高中数学高考数学10大专题技巧--专题05 立体几何中的截面问题(学生版).docx.doc
免费
0下载
2024届高考数学考向核心卷—新课标版 答案.pdf
2024届高考数学考向核心卷—新课标版 答案.pdf
免费
12下载
2013年高考数学试卷(理)(陕西)(解析卷).doc
2013年高考数学试卷(理)(陕西)(解析卷).doc
免费
0下载
2000年青海高考文科数学真题及答案.doc
2000年青海高考文科数学真题及答案.doc
免费
14下载
精品解析:江苏省张家港市2023-2024学年高三下学期2月阶段性调研测试数学试卷(原卷版).docx
精品解析:江苏省张家港市2023-2024学年高三下学期2月阶段性调研测试数学试卷(原卷版).docx
免费
0下载
2025年新高考数学复习资料专题突破卷14 累加、累乘、构造法求数列通项公式(解析版).docx
2025年新高考数学复习资料专题突破卷14 累加、累乘、构造法求数列通项公式(解析版).docx
免费
0下载
高中数学·必修第一册(湘教版)课时作业(word)  课时作业(四十九) .docx
高中数学·必修第一册(湘教版)课时作业(word) 课时作业(四十九) .docx
免费
30下载
2023年高考数学试卷(新课标Ⅱ卷)(解析卷) (5).docx
2023年高考数学试卷(新课标Ⅱ卷)(解析卷) (5).docx
免费
0下载
2023《微专题·小练习》·数学·理科·L-3专练46 高考大题专练(四) 立体几何的综合运用.docx
2023《微专题·小练习》·数学·理科·L-3专练46 高考大题专练(四) 立体几何的综合运用.docx
免费
13下载
2018年高考数学试卷(上海)(秋考)(空白卷).pdf
2018年高考数学试卷(上海)(秋考)(空白卷).pdf
免费
0下载
高中数学·必修第二册(RJ-A版)课时作业 WORD  详解答案.doc
高中数学·必修第二册(RJ-A版)课时作业 WORD 详解答案.doc
免费
27下载
上海市各区高三数学一模模块汇编解析几何汇编--教师版.docx
上海市各区高三数学一模模块汇编解析几何汇编--教师版.docx
免费
0下载
2024年新高考数学复习资料易错点10  立体几何-备战2022年高考数学考试易错题(新高考专用)(学生版) .docx
2024年新高考数学复习资料易错点10 立体几何-备战2022年高考数学考试易错题(新高考专用)(学生版) .docx
免费
0下载
2012年上海市杨浦区高考数学一模试卷(理科).doc
2012年上海市杨浦区高考数学一模试卷(理科).doc
免费
0下载
高中数学·必修第四册·RJ-B课时作业(word)  课时作业 4.docx
高中数学·必修第四册·RJ-B课时作业(word) 课时作业 4.docx
免费
10下载
2015年上海市杨浦区高考数学二模试卷(文科).doc
2015年上海市杨浦区高考数学二模试卷(文科).doc
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群