小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com重难点05导数常考经典压轴小题全归类【十大题型】【新高考专用】【题型1函数切线问题】.........................................................................................................................................3【题型2导数中函数的单调性问题】.....................................................................................................................3【题型3导数中函数的极值问题】.........................................................................................................................4【题型4导数中函数的最值问题】.........................................................................................................................5【题型5函数零点(方程根)个数问题】.............................................................................................................5【题型6利用导数解不等式】.................................................................................................................................6【题型7导数中的不等式恒成立问题】.................................................................................................................6【题型8任意存在性问题】.....................................................................................................................................6【题型9函数零点嵌套问题】.................................................................................................................................7【题型10双变量问题】...........................................................................................................................................8导数是高考数学的必考内容,是高考常考的热点内容,主要涉及导数的运算及几何意义,利用导数研究函数的单调性,函数的极值和最值问题等,考查分类讨论、数形结合、转化与化归等思想.从近三年的高考情况来看,导数的计算和几何意义是高考命题的热点,多以选择题、填空题形式考查,难度较小;利用导数研究函数的单调性、极值、最值多在选择题、填空题靠后的位置考查,难度中等偏上,属综合性问题,解题时要灵活求解.【知识点1切线方程的求法】1.求曲线“在”某点的切线方程的解题策略:①求出函数y=f(x)在x=x0处的导数,即曲线y=f(x)在点(x0,f(x0))处切线的斜率;②在已知切点坐标和切线斜率的条件下,求得切线方程为y=y0+f'(x0)(x-x0).2.求曲线“过”某点的切线方程的解题通法:①设出切点坐标T(x0,f(x0))(不出现y0);②利用切点坐标写出切线方程:y=f(x0)+f'(x0)(x-x0);③将已知条件代入②中的切线方程求解.【知识点2导数中函数单调性问题的解题策略】1.确定函数单调区间的步骤;(1)确定函数f(x)的定义域;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(2)求f'(x);(3)解不等式f'(x)>0,解集在定义域内的部分为单调递增区间;(4)解不等式f'(x)<0,解集在定义域内的部分为单调递减区间.2.含参函数的单调性的解题策略:(1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.(2)若导函数为二次函数式,首先看能否因式分解,再讨论二次项系数的正负及两根的大小;若不能因式分解,则需讨论判别式△的正负,二次项系数的正负,两根的大小及根是否在定义域内.3.根据函数单调性求参数的一般思路:(1)利用集合间的包含关系处理:y=f(x)在(a,b)上单调,则区间(a,b)是相应单调区间的子集.(2)f(x)为增(减)函数的充要条件是对任意的x(∈a,b)都有f'(x)≥0(f'(x)≤0),且在(a,b)内的任一非空子区间上,f'(x)不恒为零,应注意此时式子中的等号不能省略,否则会漏解.(3)函数在某个区间上存在单调区间可转化为不等式有解问题.【知识点3函数的极值与最值问题的解...