小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题03正余弦定理及其应用1、(2023年全国乙卷数学(文))在中,内角的对边分别是,若,且,则()A.B.C.D.【答案】C【详解】由题意结合正弦定理可得,即,整理可得,由于,故,据此可得,则.故选:C.2、(2023年全国甲卷数学(理))在中,,,D为BC上一点,AD为的平分线,则_________.【答案】【详解】如图所示:记,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com方法一:由余弦定理可得,,因为,解得:,由可得,,解得:.故答案为:.方法二:由余弦定理可得,,因为,解得:,由正弦定理可得,,解得:,,因为,所以,,又,所以,即.故答案为:.3、(2021年全国高考甲卷数学(文)试题)在中,已知,,,则()A.1B.C.D.3【答案】D【解析】设,结合余弦定理:可得:,即:,解得:(舍去),故.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com故选:D.4、(2021年全国高考乙卷数学(文)试题)记的内角A,B,C的对边分别为a,b,c,面积为,,,则________.【答案】【解析】文由题意,,所以,所以,解得(负值舍去).故答案为:.5、(2023年全国甲卷数学(文))在中,已知,,.(1)求;(2)若D为BC上一点,且,求的面积.【详解】(1)由余弦定理可得:,则,,.(2)由三角形面积公式可得,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com则.6、(2023年全国甲卷数学(文))记的内角的对边分别为,已知.(1)求;(2)若,求面积.【详解】(1)因为,所以,解得:.(2)由正弦定理可得,变形可得:,即,而,所以,又,所以,故的面积为.7、(2023年新高考天津卷)在中,角所对的边分別是.已知.(1)求的值;(2)求的值;(3)求.【详解】(1)由正弦定理可得,,即,解得:;(2)由余弦定理可得,,即,解得:或(舍去).(3)由正弦定理可得,,即,解得:,而,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以都为锐角,因此,,故.8、(2023年新课标全国Ⅰ卷)已知在中,.(1)求;(2)设,求边上的高.【详解】(1),,即,又,,,,即,所以,.(2)由(1)知,,由,由正弦定理,,可得,,.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com9、(2023年新课标全国Ⅱ卷)记的内角的对边分别为,已知的面积为,为中点,且.(1)若,求;(2)若,求.【详解】(1)方法1:在中,因为为中点,,,则,解得,在中,,由余弦定理得,即,解得,则,,所以.方法2:在中,因为为中点,,,则,解得,在中,由余弦定理得,即,解得,有,则,,过作于,于是,,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以.(2)方法1:在与中,由余弦定理得,整理得,而,则,又,解得,而,于是,所以.方法2:在中,因为为中点,则,又,于是,即,解得,又,解得,而,于是,所以.10、【2022年全国乙卷】记△ABC的内角A,B,C的对边分别为a,b,c﹐已知sinCsin(A−B)=sinBsin(C−A).(1)若A=2B,求C;(2)证明:2a2=b2+c2【解析】(1)由A=2B,sinCsin(A−B)=sinBsin(C−A)可得,sinCsinB=sinBsin(C−A),而0<B<π2,所以sinB∈(0,1),即有sinC=sin(C−A)>0,而0<C<π,0<C−A<π,显然C≠C−A,所以,C+C−A=π,而A=2B,A+B+C=π,所以C=5π8.(2)由sinCsin(A−B)=sinBsin(C−A)可得,sinC(sinAcosB−cosAsinB)=sinB(sinCcosA−cosCsinA),再由正弦定理可得,accosB−bccosA=bccosA−abcosC,然后根据余弦定理可知,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com12(a2+c2−b2)−12(b2+c2−a2)=12(b2+c2−a2)−12(a2+b2−c2),化简得:2a2=b2+c2,故原等式成立.11、【2022年全国乙卷】记△ABC的内角A,B,C的对边分别为a,b,c,已知sinCsin(A−B)=sinBsin(C−A).(1)证明:2a2=b2+c2;(2)若a=5,cosA=2531,求△ABC的周长.【解析】(1)证明:因为sinCsin(A−B)=sinBsin(C−A),所以sinCsinAco...