2024年新高考数学复习资料专题10 导数的综合运用(解析版).docx本文件免费下载 【共43页】

2024年新高考数学复习资料专题10 导数的综合运用(解析版).docx
2024年新高考数学复习资料专题10 导数的综合运用(解析版).docx
2024年新高考数学复习资料专题10 导数的综合运用(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题10导数的综合运用1、【2022年全国乙卷】已知x=x1和x=x2分别是函数f(x)=2ax−ex2(a>0且a≠1)的极小值点和极大值点.若x1<x2,则a的取值范围是____________.【答案】(1e,1)【解析】解:f&#039;(x)=2lna⋅ax−2ex,因为x1,x2分别是函数f(x)=2ax−ex2的极小值点和极大值点,所以函数f(x)在(−∞,x1)和(x2,+∞)上递减,在(x1,x2)上递增,所以当x∈(−∞,x1)∪(x2,+∞)时,f&#039;(x)<0,当x∈(x1,x2)时,f&#039;(x)>0,若a>1时,当x<0时,2lna⋅ax>0,2ex<0,则此时f&#039;(x)>0,与前面矛盾,故a>1不符合题意,若0<a<1时,则方程2lna⋅ax−2ex=0的两个根为x1,x2,即方程lna⋅ax=ex的两个根为x1,x2,即函数y=lna⋅ax与函数y=ex的图象有两个不同的交点, 0<a<1,∴函数y=ax的图象是单调递减的指数函数,又 lna<0,∴y=lna⋅ax的图象由指数函数y=ax向下关于x轴作对称变换,然后将图象上的每个点的横坐标保持不变,纵坐标伸长或缩短为原来的|lna|倍得到,如图所示:小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com设过原点且与函数y=g(x)的图象相切的直线的切点为(x0,lna⋅ax0),则切线的斜率为g&#039;(x0)=ln2a⋅ax0,故切线方程为y−lna⋅ax0=ln2a⋅ax0(x−x0),则有−lna⋅ax0=−x0ln2a⋅ax0,解得x0=1lna,则切线的斜率为ln2a⋅a1lna=eln2a,因为函数y=lna⋅ax与函数y=ex的图象有两个不同的交点,所以eln2a<e,解得1e<a<e,又0<a<1,所以1e<a<1,综上所述,a的范围为(1e,1).2、【2021年新高考2卷】已知函数,函数的图象在点和点的两条切线互相垂直,且分别交y轴于M,N两点,则取值范围是_______.【答案】【解析】由题意,,则,所以点和点,,所以,所以,所以,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com同理,所以.故答案为:3、(2023年新课标全国Ⅰ卷)1.已知函数.(1)讨论的单调性;(2)证明:当时,.【详解】(1)因为,定义域为,所以,当时,由于,则,故恒成立,所以在上单调递减;当时,令,解得,当时,,则在上单调递减;当时,,则在上单调递增;综上:当时,在上单调递减;当时,在上单调递减,在上单调递增.(2)方法一:由(1)得,,要证,即证,即证恒成立,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com令,则,令,则;令,则;所以在上单调递减,在上单调递增,所以,则恒成立,所以当时,恒成立,证毕.方法二:令,则,由于在上单调递增,所以在上单调递增,又,所以当时,;当时,;所以在上单调递减,在上单调递增,故,则,当且仅当时,等号成立,因为,当且仅当,即时,等号成立,所以要证,即证,即证,令,则,令,则;令,则;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以在上单调递减,在上单调递增,所以,则恒成立,所以当时,恒成立,证毕.4、(2023年新课标全国Ⅱ卷)(1)证明:当时,;(2)已知函数,若是的极大值点,求a的取值范围.【答案】(1)证明见详解(2)【详解】(1)构建,则对恒成立,则在上单调递增,可得,所以;构建,则,构建,则对恒成立,则在上单调递增,可得,即对恒成立,则在上单调递增,可得,所以;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com综上所述:.(2)令,解得,即函数的定义域为,若,则,因为在定义域内单调递减,在上单调递增,在上单调递减,则在上单调递减,在上单调递增,故是的极小值点,不合题意,所以.当时,令因为,且,所以函数在定义域内为偶函数,由题意可得:,(i)当时,取,,则,由(1)可得,且,所以,即当时,,则在上单调递增,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com结合偶函数的对称性可知:在上单调递减,所以是的极小值点,不合题意;(ⅱ)当时,取,则,由(1)可得,构建,则,且,则对恒成立,可知在上单调递增,且,所以在内存在唯一的零点,当时,则,且,则,即当时,,则在上单调递减,结合偶函数的对称性可知:在上单调递...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
5. 衡水中学高考积累与改错_高三数学(第1本)_260页.pdf
5. 衡水中学高考积累与改错_高三数学(第1本)_260页.pdf
免费
17下载
2019年湖南高考文科数学试题及答案word版.docx
2019年湖南高考文科数学试题及答案word版.docx
免费
16下载
2015年高考数学试卷(理)(新课标Ⅱ)(空白卷) (7).pdf
2015年高考数学试卷(理)(新课标Ⅱ)(空白卷) (7).pdf
免费
0下载
2025年新高考数学复习资料专题04 基本不等式(九大题型+模拟精练)(原卷版).docx
2025年新高考数学复习资料专题04 基本不等式(九大题型+模拟精练)(原卷版).docx
免费
0下载
2024年新高考数学复习资料【专项精练】第10课 函数图象-2024年新高考数学分层专项精练(解析版).docx
2024年新高考数学复习资料【专项精练】第10课 函数图象-2024年新高考数学分层专项精练(解析版).docx
免费
0下载
精品解析:上海市金山区2024届高三二模数学试题(原卷版).docx
精品解析:上海市金山区2024届高三二模数学试题(原卷版).docx
免费
0下载
2025年新高考数学复习资料3.8 函数零点与方程的根(含答案).docx
2025年新高考数学复习资料3.8 函数零点与方程的根(含答案).docx
免费
0下载
2022·微专题·小练习·数学【新高考】专练49.docx
2022·微专题·小练习·数学【新高考】专练49.docx
免费
1下载
2017年高考数学试卷(上海)(春考)(空白卷) (2).docx
2017年高考数学试卷(上海)(春考)(空白卷) (2).docx
免费
0下载
2022年高考数学试卷(文)(全国乙卷)(空白卷) (4).pdf
2022年高考数学试卷(文)(全国乙卷)(空白卷) (4).pdf
免费
0下载
2025年新高考数学复习资料2025届高中数学一轮复习讲义:第十章第3讲 计数原理(含解析).docx
2025年新高考数学复习资料2025届高中数学一轮复习讲义:第十章第3讲 计数原理(含解析).docx
免费
0下载
高中2023《微专题·小练习》·数学·理科·L-3专练26 平面向量基本定理及坐标表示.docx
高中2023《微专题·小练习》·数学·理科·L-3专练26 平面向量基本定理及坐标表示.docx
免费
0下载
2018年上海市崇明区高考数学一模试卷.doc
2018年上海市崇明区高考数学一模试卷.doc
免费
0下载
2025年新高考数学复习资料专题26 双曲线(七大题型 模拟精练 核心素养分析 方法归纳)- (新高考专用) 专题26 双曲线(七大题型 模拟精练)(原卷版).docx
2025年新高考数学复习资料专题26 双曲线(七大题型 模拟精练 核心素养分析 方法归纳)- (新高考专用) 专题26 双曲线(七大题型 模拟精练)(原卷版).docx
免费
0下载
2012年北京高考理科数学试题及答案.doc
2012年北京高考理科数学试题及答案.doc
免费
2下载
2008年高考数学试卷(文)(广东)(解析卷).doc
2008年高考数学试卷(文)(广东)(解析卷).doc
免费
0下载
2015年高考数学试卷(理)(新课标Ⅱ)(解析卷) (6).pdf
2015年高考数学试卷(理)(新课标Ⅱ)(解析卷) (6).pdf
免费
0下载
2024版《微专题》·数学·新高考专练 35.docx
2024版《微专题》·数学·新高考专练 35.docx
免费
30下载
2023《大考卷》二轮专项分层特训卷•数学·文科【统考版】主观题专练 6.docx
2023《大考卷》二轮专项分层特训卷•数学·文科【统考版】主观题专练 6.docx
免费
10下载
高中数学高考数学10大专题技巧--专题05 立体几何中的截面问题(教师版).docx
高中数学高考数学10大专题技巧--专题05 立体几何中的截面问题(教师版).docx
免费
0下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群