小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题13运用空间向量研究立体几何问题(2)1、(2021年全国高考甲卷数学(理)试题)已知直三棱柱中,侧面为正方形,,E,F分别为和的中点,D为棱上的点.(1)证明:;(2)当为何值时,面与面所成的二面角的正弦值最小?【解析】因为三棱柱是直三棱柱,所以底面,所以因为,,所以,又,所以平面.所以两两垂直.以为坐标原点,分别以所在直线为轴建立空间直角坐标系,如图.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以,.由题设().(1)因为,所以,所以.(2)设平面的法向量为,因为,所以,即.令,则因为平面的法向量为,设平面与平面的二面角的平面角为,则.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com当时,取最小值为,此时取最大值为.所以,此时.题组一、运用向量解决几何体中的距离问题1-1、(2023·黑龙江牡丹江·牡丹江市第三高级中学校考三模)如图,在三棱柱中,平面ABC,D,E分别为AC,的中点,,.(1)求证:平面BDE;(2)求直线DE与平面ABE所成角的正弦值;(3)求点D到平面ABE的距离.【答案】(1)证明见解析;(2);(3).小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【详解】(1)在三棱柱中,,为,的中点,∴, 平面,∴平面, 平面,∴,在三角形中,,为中点,∴, ,平面,∴平面.(2)如图,以为原点,分别以为轴建立空间直角坐标系,在直角三角形中,,,∴,,,,,,,,设平面的法向量为,,令,则,,所以,设直线与平面所成角为,所以.(3)设点到平面的距离为,所以.1-2、(2023·安徽黄山·统考三模)如图,在直角梯形中,,,四边形为平行四边形,对角线和相交于点,平面平面,,,是线段上一动点(不含端点)小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1)当点为线段的中点时,证明://平面;(2)若,,且直线与平面成角,求二面角的正弦值.【答案】(1)证明见解析(2)【详解】(1)证明:因为四边形为平行四边形,所以是中点,连接,又点为线段的中点,则,且又且,所以,所以四边形是平行四边形,所以,又平面,平面,所以平面.(2)以为原点,为轴建立空间直角坐标系(如图).则有,设,,则,为平面的法向量,所以,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com解得(其中舍去).所以设平面的法向量为,则有,,故可取.设平面的法向量为,则有,,故可取所以.所以二面角的正弦值为1-3、(2023·四川成都·四川省成都列五中学校考三模)如图,四棱柱的侧棱⊥底面ABCD,四边形ABCD为菱形,E,F分别为,的中点.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1)证明:四点共面;(2)若,求点A到平面的距离.【答案】(1)证明见解析(2)【详解】(1)取的中点为G,连接AG,GE,由E,G分别为,的中点,所以EGDCAB∥∥,且,所以四边形ABEG为平行四边形,故,又因为F是的中点,所以,所以,故B,F,,E四点共面.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(2)易知四边形为菱形,且,,,,所以菱形的面积为,设点到平面BEF的距离为,点B到平面距离为,且,由,得:,因为,,所以,又因为,,、面,所以面,所以,所以.故点A到平面的距离为题组二、最值问题2-1、(2022·江苏扬州·高三期末)如图,在三棱台ABC-A1B1C1中,底面△ABC是等腰三角形,且BC=8,AB=AC=5,O为BC的中点.侧面BCC1B1为等腰梯形,且B1C1=CC1=4,M为B1C1中点.(1)证明:平面ABC⊥平面AOM;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(2)记二面角A-BC-B1的大小为θ,当θ∈[,]时,求直线BB1平面AA1C1C所成角的正弦的最大值.【答案】(1)证明见解析;(2).【分析】(1)利用线面垂直的判定定理及面面垂直的判定定理即证;(2)设直线BB1与平面AA1C1C所成的角为α,利用坐标法可求,然后利用导函数求最值即得.(1) △ABC是等...