2024年新高考数学复习资料专题13 运用空间向量研究立体几何问题(2)(解析版).docx本文件免费下载 【共32页】

2024年新高考数学复习资料专题13 运用空间向量研究立体几何问题(2)(解析版).docx
2024年新高考数学复习资料专题13 运用空间向量研究立体几何问题(2)(解析版).docx
2024年新高考数学复习资料专题13 运用空间向量研究立体几何问题(2)(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题13运用空间向量研究立体几何问题(2)1、(2021年全国高考甲卷数学(理)试题)已知直三棱柱中,侧面为正方形,,E,F分别为和的中点,D为棱上的点.(1)证明:;(2)当为何值时,面与面所成的二面角的正弦值最小?【解析】因为三棱柱是直三棱柱,所以底面,所以因为,,所以,又,所以平面.所以两两垂直.以为坐标原点,分别以所在直线为轴建立空间直角坐标系,如图.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以,.由题设().(1)因为,所以,所以.(2)设平面的法向量为,因为,所以,即.令,则因为平面的法向量为,设平面与平面的二面角的平面角为,则.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com当时,取最小值为,此时取最大值为.所以,此时.题组一、运用向量解决几何体中的距离问题1-1、(2023·黑龙江牡丹江·牡丹江市第三高级中学校考三模)如图,在三棱柱中,平面ABC,D,E分别为AC,的中点,,.(1)求证:平面BDE;(2)求直线DE与平面ABE所成角的正弦值;(3)求点D到平面ABE的距离.【答案】(1)证明见解析;(2);(3).小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【详解】(1)在三棱柱中,,为,的中点,∴, 平面,∴平面, 平面,∴,在三角形中,,为中点,∴, ,平面,∴平面.(2)如图,以为原点,分别以为轴建立空间直角坐标系,在直角三角形中,,,∴,,,,,,,,设平面的法向量为,,令,则,,所以,设直线与平面所成角为,所以.(3)设点到平面的距离为,所以.1-2、(2023·安徽黄山·统考三模)如图,在直角梯形中,,,四边形为平行四边形,对角线和相交于点,平面平面,,,是线段上一动点(不含端点)小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1)当点为线段的中点时,证明://平面;(2)若,,且直线与平面成角,求二面角的正弦值.【答案】(1)证明见解析(2)【详解】(1)证明:因为四边形为平行四边形,所以是中点,连接,又点为线段的中点,则,且又且,所以,所以四边形是平行四边形,所以,又平面,平面,所以平面.(2)以为原点,为轴建立空间直角坐标系(如图).则有,设,,则,为平面的法向量,所以,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com解得(其中舍去).所以设平面的法向量为,则有,,故可取.设平面的法向量为,则有,,故可取所以.所以二面角的正弦值为1-3、(2023·四川成都·四川省成都列五中学校考三模)如图,四棱柱的侧棱⊥底面ABCD,四边形ABCD为菱形,E,F分别为,的中点.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1)证明:四点共面;(2)若,求点A到平面的距离.【答案】(1)证明见解析(2)【详解】(1)取的中点为G,连接AG,GE,由E,G分别为,的中点,所以EGDCAB∥∥,且,所以四边形ABEG为平行四边形,故,又因为F是的中点,所以,所以,故B,F,,E四点共面.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(2)易知四边形为菱形,且,,,,所以菱形的面积为,设点到平面BEF的距离为,点B到平面距离为,且,由,得:,因为,,所以,又因为,,、面,所以面,所以,所以.故点A到平面的距离为题组二、最值问题2-1、(2022·江苏扬州·高三期末)如图,在三棱台ABC-A1B1C1中,底面△ABC是等腰三角形,且BC=8,AB=AC=5,O为BC的中点.侧面BCC1B1为等腰梯形,且B1C1=CC1=4,M为B1C1中点.(1)证明:平面ABC⊥平面AOM;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(2)记二面角A-BC-B1的大小为θ,当θ∈[,]时,求直线BB1平面AA1C1C所成角的正弦的最大值.【答案】(1)证明见解析;(2).【分析】(1)利用线面垂直的判定定理及面面垂直的判定定理即证;(2)设直线BB1与平面AA1C1C所成的角为α,利用坐标法可求,然后利用导函数求最值即得.(1) △ABC是等...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
5. 衡水中学高考积累与改错_高三数学(第1本)_260页.pdf
5. 衡水中学高考积累与改错_高三数学(第1本)_260页.pdf
免费
17下载
2019年湖南高考文科数学试题及答案word版.docx
2019年湖南高考文科数学试题及答案word版.docx
免费
16下载
2015年高考数学试卷(理)(新课标Ⅱ)(空白卷) (7).pdf
2015年高考数学试卷(理)(新课标Ⅱ)(空白卷) (7).pdf
免费
0下载
2025年新高考数学复习资料专题04 基本不等式(九大题型+模拟精练)(原卷版).docx
2025年新高考数学复习资料专题04 基本不等式(九大题型+模拟精练)(原卷版).docx
免费
0下载
2024年新高考数学复习资料【专项精练】第10课 函数图象-2024年新高考数学分层专项精练(解析版).docx
2024年新高考数学复习资料【专项精练】第10课 函数图象-2024年新高考数学分层专项精练(解析版).docx
免费
0下载
精品解析:上海市金山区2024届高三二模数学试题(原卷版).docx
精品解析:上海市金山区2024届高三二模数学试题(原卷版).docx
免费
0下载
2025年新高考数学复习资料3.8 函数零点与方程的根(含答案).docx
2025年新高考数学复习资料3.8 函数零点与方程的根(含答案).docx
免费
0下载
2022·微专题·小练习·数学【新高考】专练49.docx
2022·微专题·小练习·数学【新高考】专练49.docx
免费
1下载
2017年高考数学试卷(上海)(春考)(空白卷) (2).docx
2017年高考数学试卷(上海)(春考)(空白卷) (2).docx
免费
0下载
2022年高考数学试卷(文)(全国乙卷)(空白卷) (4).pdf
2022年高考数学试卷(文)(全国乙卷)(空白卷) (4).pdf
免费
0下载
2025年新高考数学复习资料2025届高中数学一轮复习讲义:第十章第3讲 计数原理(含解析).docx
2025年新高考数学复习资料2025届高中数学一轮复习讲义:第十章第3讲 计数原理(含解析).docx
免费
0下载
高中2023《微专题·小练习》·数学·理科·L-3专练26 平面向量基本定理及坐标表示.docx
高中2023《微专题·小练习》·数学·理科·L-3专练26 平面向量基本定理及坐标表示.docx
免费
0下载
2018年上海市崇明区高考数学一模试卷.doc
2018年上海市崇明区高考数学一模试卷.doc
免费
0下载
2025年新高考数学复习资料专题26 双曲线(七大题型 模拟精练 核心素养分析 方法归纳)- (新高考专用) 专题26 双曲线(七大题型 模拟精练)(原卷版).docx
2025年新高考数学复习资料专题26 双曲线(七大题型 模拟精练 核心素养分析 方法归纳)- (新高考专用) 专题26 双曲线(七大题型 模拟精练)(原卷版).docx
免费
0下载
2012年北京高考理科数学试题及答案.doc
2012年北京高考理科数学试题及答案.doc
免费
2下载
2008年高考数学试卷(文)(广东)(解析卷).doc
2008年高考数学试卷(文)(广东)(解析卷).doc
免费
0下载
2015年高考数学试卷(理)(新课标Ⅱ)(解析卷) (6).pdf
2015年高考数学试卷(理)(新课标Ⅱ)(解析卷) (6).pdf
免费
0下载
2024版《微专题》·数学·新高考专练 35.docx
2024版《微专题》·数学·新高考专练 35.docx
免费
30下载
2023《大考卷》二轮专项分层特训卷•数学·文科【统考版】主观题专练 6.docx
2023《大考卷》二轮专项分层特训卷•数学·文科【统考版】主观题专练 6.docx
免费
10下载
高中数学高考数学10大专题技巧--专题05 立体几何中的截面问题(教师版).docx
高中数学高考数学10大专题技巧--专题05 立体几何中的截面问题(教师版).docx
免费
0下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群