2024年新高考数学复习资料专题05 椭圆中的离心率问题(原卷版).docx本文件免费下载 【共6页】

2024年新高考数学复习资料专题05 椭圆中的离心率问题(原卷版).docx
2024年新高考数学复习资料专题05 椭圆中的离心率问题(原卷版).docx
2024年新高考数学复习资料专题05 椭圆中的离心率问题(原卷版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题05椭圆中的离心率问题限时:120分钟满分:150分一、单选题:本大题共8小题,每个小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.1.已知椭圆C:的左、右焦点分别为,,点P在椭圆C上,且,过P作的垂线交x轴于点A,若,记椭圆的离心率为e,则()A.B.C.D.2.已知点,分别是椭圆:的左、右焦点,点P是椭圆E上的一点,若的内心是G,且,则椭圆E的离心率为()A.B.C.D.3.已知椭圆的左焦点为,上关于原点对称的两点、满足,若的最小值为,则的离心率为()A.B.C.D.4.已知、是椭圆上关于原点对称的两点,是椭圆上任意一点,且直线、的斜率分别为、(),若的最小值为,则椭圆的离心率为().A.B.C.D.5.已知是椭圆:的右焦点,点P在椭圆上,线段与圆相小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com切于点,且,则椭圆的离心率等于()A.B.C.D.6.设椭圆的左右焦点分别为,,是椭圆上不与顶点重合的一点,记为的内心.直线交轴于点,,且,则椭圆的离心率为()A.B.C.D.7.设椭圆()的右焦点为F,椭圆C上的两点A、B关于原点对称,且满足,,则椭圆C的离心率的取值范围是()A.B.C.D.8.已知焦点在x轴上的椭圆的内接平行四边形的一组对边分别经过其两个焦点(如图),当这个平行四边形为矩形时,其面积最大,则椭圆离心率的取值范围是()A.B.C.D.二、多选题:本大题共4小题,每个小题5分,共20分.在每小题给出的选项中,只有一项或者多项是符合题目要求的.9.若椭圆的离心率为,则实数的值可能为()小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.B.C.D.410.在平面直角坐标系中,椭圆上存在点,使得,其中,分别为椭圆的左、右焦点,则该椭圆的离心率可能为()A.B.C.D.11.设,分别是椭圆的左、右焦点,点P在椭圆C上,若线段的中点在y轴上,设,且,e为椭圆的离心率,则下列正确的有()A.当时,B.e随着k的增大而增大C.e可能等于D.e可能等于12.已知直线与椭圆C)交于A,B两点,线段AB的中点为,则C的离心率可能是()A.B.C.D.三、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com13.已知椭圆C的焦点为,,短轴的一个端点为B,且是一个等边三角形,则椭圆C的离心率为.14.已知椭圆,是长轴的左、右端点,动点满足,连接,交椭圆于点,且为常数,则椭圆离心率为.15.已知椭圆的左、右焦点分别为、,半焦距为,是椭圆上异于左、右顶点的任意一点,若存在以为半径的圆内切于(的面积满足),则椭圆的离心率的取值范围是.16.若椭圆上存在一点M,使得(,分别为椭圆的左、右焦点),则椭圆的离心率e的取值范围为.四、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.已知椭圆的左右焦点分别为、,M为椭圆上任意一点,的周长为.(1)求椭圆方程和椭圆的离心率;(2)过椭圆的下顶点及右焦点作直线与椭圆的另一个交点为,求的面积.18.已知椭圆与双曲线,有相同的左、右焦点,,若点是与在第一象限内的交点,且,设与的离心率分别为,,求的取值范围.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com19.设分别是椭圆的左、右焦点,是椭圆上一点且与轴垂直,直线与椭圆的另一个交点为.(1)若直线的斜率为,求椭圆的离心率;(2)若直线在轴上的截距为1,且,求椭圆的方程.20.设椭圆的左、右焦点分别为、,是上一点,轴,的正切值为.(1)求的离心率;(2)过点的直线与交于、两点,若面积的最大值为3,求的方程.21.设椭圆的左、右焦点分别为是椭圆上的一点,,原点到直线的距离为.(1)求椭圆的离心率;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(2)平面上点B满足,过与平行的直线交于两点,若,求椭圆的方程.22.如图,在平面直角坐标系中,、、分别为椭圆的三个顶点,为其右焦点,直线与直...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
1994年山东高考文科数学真题及答案.doc
1994年山东高考文科数学真题及答案.doc
免费
6下载
2015年高考数学试卷(文)(四川)(空白卷).pdf
2015年高考数学试卷(文)(四川)(空白卷).pdf
免费
0下载
2021年高考数学试卷(理)(全国乙卷)(新课标Ⅰ)(空白卷) (14).docx
2021年高考数学试卷(理)(全国乙卷)(新课标Ⅰ)(空白卷) (14).docx
免费
0下载
【免费下载】湖南2025年高考数学真题(新课标Ⅰ)(解析版).docx
【免费下载】湖南2025年高考数学真题(新课标Ⅰ)(解析版).docx
免费
0下载
2024届高考数学考向核心卷—新课标版 答题卡.pdf
2024届高考数学考向核心卷—新课标版 答题卡.pdf
免费
2下载
2020年高考数学真题(文科)(新课标Ⅲ)(原卷版).doc
2020年高考数学真题(文科)(新课标Ⅲ)(原卷版).doc
免费
0下载
2025年新高考数学复习资料考点01集合(4种核心题型+基础保分练+综合提升练+拓展冲刺练)解析版.docx
2025年新高考数学复习资料考点01集合(4种核心题型+基础保分练+综合提升练+拓展冲刺练)解析版.docx
免费
0下载
2012年高考数学试卷(理)(北京)(空白卷).doc
2012年高考数学试卷(理)(北京)(空白卷).doc
免费
0下载
第05讲 古典概型与概率的基本性质(八大题型)(课件).pptx
第05讲 古典概型与概率的基本性质(八大题型)(课件).pptx
免费
0下载
专题04 导数及其应用(解答题)(文科)(原卷版).docx
专题04 导数及其应用(解答题)(文科)(原卷版).docx
免费
0下载
2023《微专题·小练习》·数学·理科·L-3专练31 等比数列及其前n项和.docx
2023《微专题·小练习》·数学·理科·L-3专练31 等比数列及其前n项和.docx
免费
10下载
2018年全国统一高考数学试卷(文科)(全国新课标ⅲ)往年高考真题.doc
2018年全国统一高考数学试卷(文科)(全国新课标ⅲ)往年高考真题.doc
免费
0下载
2022届江苏省南京市天印高级中学高三下学期高考前模拟数学试题(解析版).docx
2022届江苏省南京市天印高级中学高三下学期高考前模拟数学试题(解析版).docx
免费
0下载
2025年新高考数学复习资料专题突破卷18 圆锥曲线中焦半径和焦点弦公式的应用(解析版).docx
2025年新高考数学复习资料专题突破卷18 圆锥曲线中焦半径和焦点弦公式的应用(解析版).docx
免费
0下载
2025年新高考数学复习资料考点巩固卷14 空间几何体的表面积和体积(六大考点)(原卷版).docx
2025年新高考数学复习资料考点巩固卷14 空间几何体的表面积和体积(六大考点)(原卷版).docx
免费
0下载
2013年高考数学试卷(理)(大纲版)(空白卷).pdf
2013年高考数学试卷(理)(大纲版)(空白卷).pdf
免费
0下载
2024年新高考数学复习资料专题8.2 圆的方程(原卷版).docx
2024年新高考数学复习资料专题8.2 圆的方程(原卷版).docx
免费
0下载
【免费下载】湖南2025年高考数学真题(新课标Ⅰ)(原卷版).docx
【免费下载】湖南2025年高考数学真题(新课标Ⅰ)(原卷版).docx
免费
0下载
2024年高考数学试卷(新课标Ⅰ卷)(解析卷) (4).pdf
2024年高考数学试卷(新课标Ⅰ卷)(解析卷) (4).pdf
免费
0下载
2025年新高考数学复习资料2025届高中数学一轮复习练习:第七章 限时跟踪检测(三十五) 数列的概念及简单表示(含解析).docx
2025年新高考数学复习资料2025届高中数学一轮复习练习:第七章 限时跟踪检测(三十五) 数列的概念及简单表示(含解析).docx
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群