2024年新高考数学复习资料第07讲 函数的基本性质Ⅰ-单调性与最值(精讲)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx本文件免费下载 【共15页】

2024年新高考数学复习资料第07讲 函数的基本性质Ⅰ-单调性与最值(精讲)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
2024年新高考数学复习资料第07讲 函数的基本性质Ⅰ-单调性与最值(精讲)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
2024年新高考数学复习资料第07讲 函数的基本性质Ⅰ-单调性与最值(精讲)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)第07讲函数的基本性质Ⅰ-单调性与最值(精讲)题型目录一览①函数单调性的判断与证明②求函数的单调区间③复合函数的单调性④函数单调性的应用⑤函数的最值(值域)1.函数的单调性(1)增函数:若对于定义域I内的某个区间DDI上的任意两个自变量1x、2x,当12xx时,都有12fxfx,那么就说函数fx在区间D上是增函数;(2)减函数:若对于定义域I内的某个区间DDI上的任意两个自变量1x、2x,当12xx时,都有12fxfx,那么就说函数fx在区间D上是减函数.(3)【特别提醒】①单调区间只能用区间表示,不能用不等式或集合表示.②有多个单调区间应分别写,不能用符号“∪”连接,也不能用“或”连接,只能用“逗号”或“和”连接.2.函数的最值(1)最大值:一般地,设函数yfx的定义域为I,如果存在实数M满足:①对于任意的xI,都有fxM;②存在0xI,使得0fxM.那么,我们称M是函数yfx的最大值.一、知识点梳理小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(2)最小值:一般地,设函数yfx的定义域为I,如果存在实数m满足:①对于任意的xI,都有fxm;②存在0xI,使得0fxm.那么,我们称m是函数yfx的最小值.(3)函数最值存在的两个结论①闭区间上的连续函数一定存在最大值和最小值.②开区间上的“单峰”函数一定存在最大(小)值.【常用结论】1.∀x1,x2∈D(x1≠x2),⇔f(x)在D上是增函数;⇔f(x)在D上是减函数.2.对勾函数y=(a>0)的增区间为(-∞,-]和[,+∞),减区间为[-,0)和(0,].3.当f(x),g(x)都是增(减)函数时,f(x)+g(x)是增(减)函数.4.若k>0,则kf(x)与f(x)单调性相同;若k<0,则kf(x)与f(x)的单调性相反.5.函数y=f(x)在公共定义域内与y=的单调性相反.6.复合函数y=f[g(x)]的单调性与函数y=f(u)和u=g(x)的单调性关系是“同增异减”.题型一函数单调性的判断与证明策略方法1.定义法证明函数单调性的步骤2.判断函数单调性的四种方法二、题型分类精讲小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1)象法;图(2)性法;质(3)法;导数(4)定法.义3.证明函数单调性的两种方法(1)定法;义(2)法.导数【典例1】设函数,指出在上的单调性,并用定义法证明你的结论.【题型训练】一、单选题1.设函数满足:对任意的都有,则与大小关系是()A.B.C.D.2.设函数的定义域为,已知为上的减函数,,,则是的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件二、填空题3.若,则函数在上的值域是______________.4.对于函数定义域内的任意且,给出下列结论:(1)(2)小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(3)(4)其中正确结论为:三、解答题5.根据定义证明函数在区间上单调递增.6.已知函数.(1)求的解析式;(2)判断并证明函数在上的单调性.7.设对任意的有,且当时,.(1)求证是上的减函数;(2)若,求在上的最大值与最小值.题型二求函数的单调区间策略方法求复合函数单调区间的一般步骤(1)求函的定域数义(定域先行义).(2)求函的.简单数单调区间(3)求合函的复数单调区间,其依据是“同增异减”.【典例1】已知函数(1)画出函数图象小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(2)结合图象写出函数的单调增区间和的单调减区间.【题型训练】一、单选题1.函数,的单调减区间为()A.B.C.D.2.函数的单调增区间是()A.和B.和C.和D.和3.如果函数在区间上是减函数,且函数在区间上是增函数,那么称函数是区间上的“可变函数”,区间叫做“可变区间”.若函数是区间上的“可变函数”,则“可变区间”为()A.和B.C.D.二、填空题4.函数的单调减区间为___________.5.函数的单调增区间是___________.三、解答题6.已知二次函数的最小值为1,且满足,,点在...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2024年新高考数学复习资料重难点突破01 求函数中值域、最值常用方法(原卷版).docx
2024年新高考数学复习资料重难点突破01 求函数中值域、最值常用方法(原卷版).docx
免费
0下载
2024版《微专题》·数学·新高考专练 38.docx
2024版《微专题》·数学·新高考专练 38.docx
免费
11下载
2024年新高考数学复习资料专题14 空间几何体的折叠及多面体的问题(原卷版).docx
2024年新高考数学复习资料专题14 空间几何体的折叠及多面体的问题(原卷版).docx
免费
0下载
高中数学·选择性必修·第一册·(RJ-A版)课时作业WORD  课时作业(十三).docx
高中数学·选择性必修·第一册·(RJ-A版)课时作业WORD 课时作业(十三).docx
免费
1下载
2002年海南高考理科数学真题及答案.doc
2002年海南高考理科数学真题及答案.doc
免费
3下载
2024年新高考数学复习资料专题12 坐标系与参数方程-2022年高考真题和模拟题数学分专题训练(学生版).docx
2024年新高考数学复习资料专题12 坐标系与参数方程-2022年高考真题和模拟题数学分专题训练(学生版).docx
免费
0下载
高中数学·必修第一册(RJ-A版)课时作业WORD  课时作业 55.docx
高中数学·必修第一册(RJ-A版)课时作业WORD 课时作业 55.docx
免费
6下载
2020年高考数学试卷(上海)(春考)(空白卷) (1).docx
2020年高考数学试卷(上海)(春考)(空白卷) (1).docx
免费
0下载
2021年高考数学试卷(新高考Ⅰ卷)(解析卷) (6).pdf
2021年高考数学试卷(新高考Ⅰ卷)(解析卷) (6).pdf
免费
1下载
2014年上海市黄浦区高考数学一模试卷(文科).doc
2014年上海市黄浦区高考数学一模试卷(文科).doc
免费
0下载
2022年高考数学试卷(文)(全国乙卷)(解析卷).docx
2022年高考数学试卷(文)(全国乙卷)(解析卷).docx
免费
0下载
精品解析:上海市嘉定区2024届高三一模数学试题(原卷版).docx
精品解析:上海市嘉定区2024届高三一模数学试题(原卷版).docx
免费
0下载
2020年高考数学试卷(上海)(秋考)(空白卷).pdf
2020年高考数学试卷(上海)(秋考)(空白卷).pdf
免费
0下载
2018年高考数学试卷(文)(天津)(空白卷).doc
2018年高考数学试卷(文)(天津)(空白卷).doc
免费
0下载
2024版《大考卷》全程考评特训卷·数学·文科【统考版】点点练 32.docx
2024版《大考卷》全程考评特训卷·数学·文科【统考版】点点练 32.docx
免费
27下载
1997年海南高考文科数学真题及答案.doc
1997年海南高考文科数学真题及答案.doc
免费
9下载
2024版《大考卷》全程考评特训卷·数学【新教材】单元过关检测四.docx
2024版《大考卷》全程考评特训卷·数学【新教材】单元过关检测四.docx
免费
11下载
2023年高考数学试卷(新课标Ⅱ卷)(空白卷).docx
2023年高考数学试卷(新课标Ⅱ卷)(空白卷).docx
免费
0下载
精品解析:2020届上海市嘉定区高三一模数学试题(原卷版).docx
精品解析:2020届上海市嘉定区高三一模数学试题(原卷版).docx
免费
0下载
2025年新高考数学复习资料2025年高考数学一轮专题复习--空间向量和立体几何专题一(含解析).doc
2025年新高考数学复习资料2025年高考数学一轮专题复习--空间向量和立体几何专题一(含解析).doc
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群
提交所需资料详情,我们来帮找资料