2024年新高考数学复习资料第07练 函数的基本性质Ⅰ-单调性与最值(精练:基础+重难点)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx本文件免费下载 【共30页】

2024年新高考数学复习资料第07练 函数的基本性质Ⅰ-单调性与最值(精练:基础+重难点)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
2024年新高考数学复习资料第07练 函数的基本性质Ⅰ-单调性与最值(精练:基础+重难点)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
2024年新高考数学复习资料第07练 函数的基本性质Ⅰ-单调性与最值(精练:基础+重难点)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)第07讲函数的基本性质Ⅰ-单调性与最值(精练)【A组在基础中考查功底】一、单选题1.在下列四个函数中,在上为增函数的是()A.B.C.D.【答案】C【分析】根据函数的单调性确定正确答案.【详解】A选项,是常数函数,不符合题意.B选项,的开口向上,对称轴为,所以在上递减,不符合题意.C选项,,在上为增函数,符合题意.D选项,当时,,在上递减,不符合题意.故选:C2.函数在区间上的最大值为()A.B.C.D.【答案】B【分析】利用换元法以及对勾函数的单调性求解即可.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【详解】设,则问题转化为求函数在区间上的最大值.根据对勾函数的性质,得函数在区间上单调递减,在区间上单调递增,所以.故选:B3.设函数,若,则实数的取值范围是()A.B.C.D.【答案】B【分析】判断出的单调性,由此化简不等式,从而求得的取值范围.【详解】画出的图象如下图所示,结合图象可知在上递增,由得,解得.故选:B4.已知,则“”是“函数在内单调递减”的()小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【分析】求得“函数在内单调递减”时的取值范围,根据充分、必要条件的知识求得正确答案.【详解】若函数在内单调递减,当时,在内单调递减,符合题意.当时,的开口向上,对称轴为,则,解得.当时,的开口向下,对称轴为,则,解得.综上所述,若函数在内单调递减,则.所以“”是“函数在内单调递减”的充分不必要条件.故选:A5.若对任意的,恒成立,则m的取值范围是()A.B.C.D.【答案】C【分析】将原不等式参数分离,转化为基本不等式即可求解.【详解】,即m大于函数的最大值,,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com∴的最大值为-2,;故选:C.6.已知函数的最小值为a,则函数的最小值为()A.B.C.D.【答案】B【分析】由题可得,然后根据二次函数的性质即得.【详解】因为函数与函数在上为增函数,所以函数为增函数,所以,∴,∴当,即时,函数有最小值.故选:B.7.已知函数在上单调递增,则实数的取值范围是()A.B.C.D.【答案】A【分析】根据一次函数和二次函数单调性,结合分段函数区间端点的函数值大小关系求解即可.【详解】根据题意,函数在时为单调递增,即,解得;易知,二次函数是开口向上且关于对称的抛物线,所以为单调递增;若满足函数在上单调递增,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com则分段端点处的函数值需满足,如下图所示:所以,解得;综上可得.故选:A8.若偶函数在上单调递增,且,则不等式解集是()A.B.C.D.【答案】A【分析】根据偶函数的性质,结合分类讨论思想进行求解即可.【详解】因为是偶函数,所以由,当时,由,因为在上单调递增,所以,或,而,所以;当时,由,因为在上单调递增,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以或,而,所以,故选:A二、多选题9.已知函数则下列结论正确的是()A.f(x)的定义域是,值域是B.f(x)的单调减区间是(1,3)C.f(x)的定义域是,值域是D.f(x)的单调增区间是(-∞,1)【答案】AB【分析】先根据被开方数大于等于零,求出函数定义域,再结合二次函数的对称性求出函数的值域并判断函数的单调性,逐一判断各选项即可.【详解】已知函数,对于A、C,令,则,解得,定义域为.,又,函数的值域为,故A正确,C错误;对于B、D,函数定义域为,函数的对称轴为,所以在区间单调递增,在区间上单调递减,故B正确,D错误;故选:AB.10.若二次函数在区间上是增函数,则a可以是()A.B.0C.1D.2【答案】AB【分析】根据单调性得二次函数的对称轴和区间的位置关系,据此列不等式求解即可.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2024年新高考数学复习资料素养拓展3 与大学高等数学接轨的三类函数(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
2024年新高考数学复习资料素养拓展3 与大学高等数学接轨的三类函数(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
免费
0下载
2024年新高考数学复习资料2024年高考数学一轮复习(新高考版) 第7章 §7.9 空间动态问题突破[培优课].docx
2024年新高考数学复习资料2024年高考数学一轮复习(新高考版) 第7章 §7.9 空间动态问题突破[培优课].docx
免费
0下载
2008年高考数学试卷(理)(陕西)(解析卷).doc
2008年高考数学试卷(理)(陕西)(解析卷).doc
免费
0下载
高中2024版考评特训卷·数学【新教材】考点练37.docx
高中2024版考评特训卷·数学【新教材】考点练37.docx
免费
0下载
2013年高考数学试卷(理)(新课标Ⅱ)(解析卷) (5).pdf
2013年高考数学试卷(理)(新课标Ⅱ)(解析卷) (5).pdf
免费
0下载
2024年新高考数学复习资料重难点突破01 集合中的新定义问题(原卷版).docx
2024年新高考数学复习资料重难点突破01 集合中的新定义问题(原卷版).docx
免费
0下载
2025年新高考数学复习资料专题19 立体几何初步(Ⅱ)(思维导图+知识清单+核心素养分析+方法归纳).docx
2025年新高考数学复习资料专题19 立体几何初步(Ⅱ)(思维导图+知识清单+核心素养分析+方法归纳).docx
免费
0下载
2025年新高考数学复习资料第05讲 数列求和(十三大题型)(讲义)(原卷版).docx
2025年新高考数学复习资料第05讲 数列求和(十三大题型)(讲义)(原卷版).docx
免费
0下载
高中数学·必修第一册(湘教版)课时作业(word)  课时作业(五十五).docx
高中数学·必修第一册(湘教版)课时作业(word) 课时作业(五十五).docx
免费
16下载
高中数学·选择性必修·第二册·湘教版课时作业WORD  课时作业(二十九).docx
高中数学·选择性必修·第二册·湘教版课时作业WORD 课时作业(二十九).docx
免费
5下载
高中2024版考评特训卷·数学·理科【统考版】点点练 33.docx
高中2024版考评特训卷·数学·理科【统考版】点点练 33.docx
免费
0下载
2024年新高考数学复习资料第05讲 对数与对数函数(讲义)(解析版).docx
2024年新高考数学复习资料第05讲 对数与对数函数(讲义)(解析版).docx
免费
0下载
高中数学·必修第四册·RJ-B课时作业(word)  课时作业 7.docx
高中数学·必修第四册·RJ-B课时作业(word) 课时作业 7.docx
免费
24下载
2016年上海市闵行区高考数学二模试卷(文科).doc
2016年上海市闵行区高考数学二模试卷(文科).doc
免费
0下载
精品解析:江苏省南通市如皋市2024届高三下学期2月诊断测试数学试题(原卷版).docx
精品解析:江苏省南通市如皋市2024届高三下学期2月诊断测试数学试题(原卷版).docx
免费
0下载
2019年高考数学试卷(理)(新课标Ⅱ)(空白卷) (4).pdf
2019年高考数学试卷(理)(新课标Ⅱ)(空白卷) (4).pdf
免费
0下载
2023年高考数学试卷(文)(全国乙卷)(解析卷) (9).docx
2023年高考数学试卷(文)(全国乙卷)(解析卷) (9).docx
免费
0下载
2014年高考数学真题(理科)(新课标Ⅰ)(解析版).doc
2014年高考数学真题(理科)(新课标Ⅰ)(解析版).doc
免费
13下载
2012年高考数学试卷(理)(浙江)(解析卷).pdf
2012年高考数学试卷(理)(浙江)(解析卷).pdf
免费
0下载
2025年新高考数学复习资料第03讲 幂函数与二次函数(八大题型)(练习)(解析版).docx
2025年新高考数学复习资料第03讲 幂函数与二次函数(八大题型)(练习)(解析版).docx
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群
提交所需资料详情,我们来帮找资料