2024年新高考数学复习资料素养拓展06 导数中的公切线问题(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx本文件免费下载 【共7页】

2024年新高考数学复习资料素养拓展06 导数中的公切线问题(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
2024年新高考数学复习资料素养拓展06 导数中的公切线问题(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
2024年新高考数学复习资料素养拓展06 导数中的公切线问题(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)素养拓展06导数中的公切线问题(精讲+精练)一、公切线问题一般思路两个曲线的公切线问题,主要考查利用导数的几何意义进行解决,关键是抓住切线的斜率进行转化和过渡.主要应用在求公切线方程,切线有关的参数,以及与函数的其他性质联系到一起.处理与切线有关的参数,通常根据曲线、切线、切点的三个关系列出参数的方程并解出参数:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上.考法1:求公切线方程已知其中一曲线上的切点,利用导数几何意义求切线斜率,进而求出另一曲线上的切点;不知切点坐标,则应假设两切点坐标,通过建立切点坐标间的关系式,解方程.具体做法为:设公切线在y=f(x)上的切点P1(x1,f(x1)),在y=g(x)上的切点P2(x2,g(x2)),则f′(x1)=g′(x2)=.考法2:由公切线求参数的值或范围问题由公切线求参数的值或范围问题,其关键是列出函数的导数等于切线斜率的方程.【典例1】若直线是曲线的切线,也是曲线的切线,则______.【解析】设与和,分别切于点,,由导数的几何意义可得:,即,①则切线方程为,即,或,即,②二、题型精讲精练一、知识点梳理小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com将①代入②得,又直线是曲线的切线,也是曲线的切线,则,即,则或,即或,故答案为1或.【典例2】已知直线与函数的图像相切于点,与函数的图像相切于点,若,且,,则______.【解析】依题意,可得,整理得令,则在单调递增且,∴存在唯一实数,使,,,,,∴,故.【题型训练】1.求公切线方程一、单选题1.(2023·全国·高三专题练习)曲线与曲线的公切线方程为()A.B.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comC.D.2.(2023·全国·高三专题练习)对于三次函数,若曲线在点处的切线与曲线在点处点的切线重合,则()A.B.C.D.3.(2023·全国·高三专题练习)已知函数,.若经过点存在一条直线l与曲线和都相切,则()A.-1B.1C.2D.34.(2023·全国·高三专题练习)已知函数,则和的公切线的条数为A.三条B.二条C.一条D.0条5.(2023·全国·高三专题练习)已知函数,,若与在公共点处的切线相同,则()A.B.C.D.6.(2023·全国·高三专题练习)函数在点处的切线与函数的图象也相切,则满足条件的切点的个数有A.0个B.1个C.2个D.3个二、填空题7.(2023·吉林长春·长春吉大附中实验学校校考模拟预测)与曲线和都相切的直线方程为__________.8.(2023·全国·高三专题练习)已知(为自然对数的底数),,请写出与的一条公切线的方程______.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com9.(2023春·安徽·高三合肥市第六中学校联考开学考试)已知直线l与曲线、都相切,则直线l的方程为______.10.(2023春·浙江金华·高三浙江金华第一中学校考阶段练习)已知直线是曲线与的公切线,则__________.2.公切线中的参数问题一、单选题1.(2023·陕西渭南·统考一模)已知直线是曲线与曲线的公切线,则等于()A.B.3C.D.22.(2023·陕西榆林·校考模拟预测)若直线与曲线相切,切点为,与曲线也相切,切点为,则的值为()A.B.C.0D.13.(2023春·河南·高三校联考阶段练习)已知曲线在点处的切线也与曲线相切,则所在的区间是()A.B.C.D.4.(2023·全国·高三专题练习)若函数与的图像存在公共切线,则实数的最大值为()小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.B.C.D.5.(2023·湖南郴州·统考模拟预测)定义:若直线l与函数,的图象都相切,则称直线l为函数和的公切线.若函数和有且仅有一条公切线,则实数a的值为()A.eB.C.D.6.(2023春·广东汕头·高三汕头市潮阳实验学校校考阶段练习)已知函数,,若总存在两条不同的直线与函数,图象均相切,则实数a的取值范围为()A.B.C.D.7.(2023·全国·...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
5. 衡水中学高考积累与改错_高三数学(第1本)_260页.pdf
5. 衡水中学高考积累与改错_高三数学(第1本)_260页.pdf
免费
17下载
2019年湖南高考文科数学试题及答案word版.docx
2019年湖南高考文科数学试题及答案word版.docx
免费
16下载
2015年高考数学试卷(理)(新课标Ⅱ)(空白卷) (7).pdf
2015年高考数学试卷(理)(新课标Ⅱ)(空白卷) (7).pdf
免费
0下载
2025年新高考数学复习资料专题04 基本不等式(九大题型+模拟精练)(原卷版).docx
2025年新高考数学复习资料专题04 基本不等式(九大题型+模拟精练)(原卷版).docx
免费
0下载
2024年新高考数学复习资料【专项精练】第10课 函数图象-2024年新高考数学分层专项精练(解析版).docx
2024年新高考数学复习资料【专项精练】第10课 函数图象-2024年新高考数学分层专项精练(解析版).docx
免费
0下载
精品解析:上海市金山区2024届高三二模数学试题(原卷版).docx
精品解析:上海市金山区2024届高三二模数学试题(原卷版).docx
免费
0下载
2025年新高考数学复习资料3.8 函数零点与方程的根(含答案).docx
2025年新高考数学复习资料3.8 函数零点与方程的根(含答案).docx
免费
0下载
2022·微专题·小练习·数学【新高考】专练49.docx
2022·微专题·小练习·数学【新高考】专练49.docx
免费
1下载
2017年高考数学试卷(上海)(春考)(空白卷) (2).docx
2017年高考数学试卷(上海)(春考)(空白卷) (2).docx
免费
0下载
2022年高考数学试卷(文)(全国乙卷)(空白卷) (4).pdf
2022年高考数学试卷(文)(全国乙卷)(空白卷) (4).pdf
免费
0下载
2025年新高考数学复习资料2025届高中数学一轮复习讲义:第十章第3讲 计数原理(含解析).docx
2025年新高考数学复习资料2025届高中数学一轮复习讲义:第十章第3讲 计数原理(含解析).docx
免费
0下载
高中2023《微专题·小练习》·数学·理科·L-3专练26 平面向量基本定理及坐标表示.docx
高中2023《微专题·小练习》·数学·理科·L-3专练26 平面向量基本定理及坐标表示.docx
免费
0下载
2018年上海市崇明区高考数学一模试卷.doc
2018年上海市崇明区高考数学一模试卷.doc
免费
0下载
2025年新高考数学复习资料专题26 双曲线(七大题型 模拟精练 核心素养分析 方法归纳)- (新高考专用) 专题26 双曲线(七大题型 模拟精练)(原卷版).docx
2025年新高考数学复习资料专题26 双曲线(七大题型 模拟精练 核心素养分析 方法归纳)- (新高考专用) 专题26 双曲线(七大题型 模拟精练)(原卷版).docx
免费
0下载
2012年北京高考理科数学试题及答案.doc
2012年北京高考理科数学试题及答案.doc
免费
2下载
2008年高考数学试卷(文)(广东)(解析卷).doc
2008年高考数学试卷(文)(广东)(解析卷).doc
免费
0下载
2015年高考数学试卷(理)(新课标Ⅱ)(解析卷) (6).pdf
2015年高考数学试卷(理)(新课标Ⅱ)(解析卷) (6).pdf
免费
0下载
2024版《微专题》·数学·新高考专练 35.docx
2024版《微专题》·数学·新高考专练 35.docx
免费
30下载
2023《大考卷》二轮专项分层特训卷•数学·文科【统考版】主观题专练 6.docx
2023《大考卷》二轮专项分层特训卷•数学·文科【统考版】主观题专练 6.docx
免费
10下载
高中数学高考数学10大专题技巧--专题05 立体几何中的截面问题(教师版).docx
高中数学高考数学10大专题技巧--专题05 立体几何中的截面问题(教师版).docx
免费
0下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群