2024年新高考数学复习资料重难点突破03 原函数与导函数混合还原问题 (十三大题型)(解析版).docx本文件免费下载 【共44页】

2024年新高考数学复习资料重难点突破03 原函数与导函数混合还原问题 (十三大题型)(解析版).docx
2024年新高考数学复习资料重难点突破03 原函数与导函数混合还原问题 (十三大题型)(解析版).docx
2024年新高考数学复习资料重难点突破03 原函数与导函数混合还原问题 (十三大题型)(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com重难点突破03原函数与导函数混合还原问题目录1、对于,构造,2、对于,构造3、对于,构造,4、对于,构造5、对于,构造,6、对于,构造7、对于,构造,8、对于,构造9、对于,构造,10、对于,构造11、对于,构造,12、对于,构造13、对于,构造14、对于,构造15、;;;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com16、;.题型一:利用构造型例1.(安徽省马鞍山第二中学2022-2023学年高三上学期10月段考数学试题)已知的定义域为,为的导函数,且满足,则不等式的解集是()A.B.C.D.【答案】B【解析】根据题意,构造函数,,则,所以函数的图象在上单调递减.又因为,所以,所以,解得或(舍).所以不等式的解集是.故选:B.例2.(河南省温县第一高级中学2022-2023学年高三上学期12月月考数学试题)已知函数的定义域为,且满足(是的导函数),则不等式的解集为()A.B.C.D.【答案】C【解析】令,则,即在上递增,又,则等价于,即,所以,解得,原不等式解集为.故选:C例3.(黑龙江省大庆实验中学2023届高三下学期5月考前得分训练(三)数学试题)已知函数的定义域为,为函数的导函数,若,,则不等式的解小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com集为()A.B.C.D.【答案】D【解析】由题意得,,即,所以,即,又,所以,故,,可得,在上,,单调递增;在上,,单调递减,所以的极大值为.简图如下:所以,,.故选:D.变式1.(2023届高三第七次百校大联考数学试题(新高考))已知定义在上的偶函数的导函数为,当时,,且,则不等式的解集为()A.B.C.D.【答案】C【解析】当时,,所以当时,,令,则当时,,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com故在上单调递增,又因为在上为偶函数,所以在上为奇函数,故在上单调递增,因为,所以,当时,可变形为,即,因为在上单调递增,所以,解得,故;当时,可变形为,即,因为在上单调递增,所以,解得,故无解.综上不等式的解集为.故选:C.变式2.(四川省绵阳市盐亭中学2023届高三第二次模拟考试数学试题)已知定义在上的函数满足,,则关于的不等式的解集为()A.B.C.D.【答案】D【解析】令,则,所以在单调递减,不等式可以转化为,即,所以.故选:D.变式3.(河南省豫北重点高中2022-2023学年高三下学期4月份模拟考试文科数学试题)已知函数的定义域为,其导函数是,且.若,则不等式的解集是()A.B.C.D.【答案】B【解析】构造函数,其中,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com则,故函数在上为增函数,且,因为,由可得,即,解得.故选:B.变式4.(广西15所名校大联考2023届高三高考精准备考原创模拟卷(一)数学试题)已知是定义在R上的偶函数,其导函数为,且,则不等式的解集为()A.B.C.D.【答案】C【解析】设,则在R上为奇函数,且.又,当时,,所以在上为增函数,因此在R上为增函数.又,当时,不等式化为,即,所以;当时,不等式化为,即,解得,故无解,故不等式的解集为.故选:C【解题方法总结】1、对于,构造,2、对于,构造题型二:利用构造型例4.(河南省信阳市息县第一高级中学2022-2023学年高三上学期9月月考数学试题)已知定义在小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com的函数满足:,其中为的导函数,则不等式的解集为()A.B.C.D.【答案】A【解析】设,因为,所以在上,所以在上单调递增,由已知,的定义域为,所以,所以等价于,即,所以,解得,所以原不等式的解集是.故选:A.例5.已知定义域为{x|x≠0}的偶函数f(x),其导函数为f′(x),对任意正实数x满足xf′(x)>2f(x),若g(x)=,则不等式g(x)<g(1)的解集是()A.(-∞,1)B.(-1,1)C.(-∞,0)∪(0,1)D.(-1,0)∪(0,1)【答案】D【解析】因为f(x)是定义域为{x|x≠0}的偶函数,所以f(-x)=f(x).对任意正实数x满足,所以,因为,所以g(x)也是偶函数.小学、初中...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2015年高考数学试卷(理)(新课标Ⅰ)(空白卷) (3).pdf
2015年高考数学试卷(理)(新课标Ⅰ)(空白卷) (3).pdf
免费
0下载
高中2024版考评特训卷·数学【新教材】考点练56.docx
高中2024版考评特训卷·数学【新教材】考点练56.docx
免费
0下载
高中数学·选择性必修·第三册·(RJ-B版)课时作业(word)  课时作业参考答案.docx
高中数学·选择性必修·第三册·(RJ-B版)课时作业(word) 课时作业参考答案.docx
免费
11下载
2012年高考数学试卷(理)(新课标)(空白卷) (2).pdf
2012年高考数学试卷(理)(新课标)(空白卷) (2).pdf
免费
0下载
2023年高考数学试卷(新课标Ⅱ卷)(解析卷) (6).pdf
2023年高考数学试卷(新课标Ⅱ卷)(解析卷) (6).pdf
免费
0下载
高中数学高考数学10大专题技巧--专题九 函数的奇偶性、周期性与单调性的综合问题(学生版).docx.doc
高中数学高考数学10大专题技巧--专题九 函数的奇偶性、周期性与单调性的综合问题(学生版).docx.doc
免费
0下载
2022·微专题·小练习·数学·文科【统考版】专练49.docx
2022·微专题·小练习·数学·文科【统考版】专练49.docx
免费
28下载
2017年高考数学试卷(理)(山东)(空白卷).pdf
2017年高考数学试卷(理)(山东)(空白卷).pdf
免费
0下载
2017年高考数学真题(文科)(新课标Ⅱ)(解析版).doc
2017年高考数学真题(文科)(新课标Ⅱ)(解析版).doc
免费
18下载
高中数学·必修第一册(RJ-A版)课时作业WORD  课时作业 3.docx
高中数学·必修第一册(RJ-A版)课时作业WORD 课时作业 3.docx
免费
5下载
2015年海南省高考数学(原卷版)(理科).docx
2015年海南省高考数学(原卷版)(理科).docx
免费
10下载
2023年高考数学试卷(理)(全国乙卷)(解析卷) (4).pdf
2023年高考数学试卷(理)(全国乙卷)(解析卷) (4).pdf
免费
0下载
2009年高考数学试卷(理)(陕西)(解析卷).doc
2009年高考数学试卷(理)(陕西)(解析卷).doc
免费
0下载
2011年高考数学试卷(理)(新课标)(空白卷) (4).pdf
2011年高考数学试卷(理)(新课标)(空白卷) (4).pdf
免费
0下载
高中2024版考评特训卷·数学【新教材】考点练46.docx
高中2024版考评特训卷·数学【新教材】考点练46.docx
免费
0下载
2023年高考数学试卷(文)(全国乙卷)(解析卷) (8).docx
2023年高考数学试卷(文)(全国乙卷)(解析卷) (8).docx
免费
0下载
2023《微专题·小练习》·数学·文科·L-2专练37.docx
2023《微专题·小练习》·数学·文科·L-2专练37.docx
免费
16下载
精品解析:江苏省百校大联考2024届高三上学期第五次考试数学试题(解析版).docx
精品解析:江苏省百校大联考2024届高三上学期第五次考试数学试题(解析版).docx
免费
0下载
2023年高考数学试卷(理)(全国甲卷)(空白卷) (2).pdf
2023年高考数学试卷(理)(全国甲卷)(空白卷) (2).pdf
免费
0下载
2021年高考数学试卷(理)(全国甲卷)(空白卷).pdf
2021年高考数学试卷(理)(全国甲卷)(空白卷).pdf
免费
0下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

相关文档

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群