精品解析:2023届江苏省南京市第五高级中学高三下学期二模热身测试数学试题(原卷版).docx本文件免费下载 【共7页】

精品解析:2023届江苏省南京市第五高级中学高三下学期二模热身测试数学试题(原卷版).docx
精品解析:2023届江苏省南京市第五高级中学高三下学期二模热身测试数学试题(原卷版).docx
精品解析:2023届江苏省南京市第五高级中学高三下学期二模热身测试数学试题(原卷版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com南京市第五高级中学高三数学二模热身测命题人审核人一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,,则()A.B.C.D.2.复数满足,则()A.B.C.D.53.已知,且,则()A.B.C.D.4.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中提出了一些新的垛积公式,他所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项之差成等差数列.现有一高阶等差数列,其前7项分别为1,2,4,7,11,16,22,则该数列的第100项为()A.4923B.4933C.4941D.49515.有7名运动员(5男2女)参加三个集训营集训,其中集训营安排5人,集训营与集训营各安排1人,且两名女运动员不在同一个集训营,则不同的安排方案种数为()A.18B.22C.30D.366.已知,分别是双曲线的左、右焦点,过的直线分别交双曲线左、右两支于A,B两点,点C在x轴上,,平分,则双曲线的离心率为()小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.B.C.D.7.“碳达峰”,是指二氧化碳的排放不再增长,达到峰值之后开始下降;而“碳中和”,是指企业、团体或个人通过植树造林、节能减排等形式,抵消自身产生的二氧化碳排放量,实现二氧化碳“零排放”.某地区二氧化碳的排放量达到峰值a(亿吨)后开始下降,其二氧化碳的排放量S(亿吨)与时间t(年)满足函数关系式,若经过5年,二氧化碳的排放量为(亿吨).已知该地区通过植树造林、节能减排等形式,能抵消自产生的二氧化碳排放量为(亿吨),则该地区要能实现“碳中和”,至少需要经过多少年?(参考数据:)()A.28B.29C.30D.318.已知函数是定义在上的奇函数,且的一个周期为2,则()A.1为的周期B.的图象关于点对称C.D.的图象关于直线对称二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列命题中,真命题有()A.数据6,2,3,4,5,7,8,9,1,10的70%分位数是8.5B.若随机变量,则C.若事件A,B满足且,则A与B独立D.若随机变量,则小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com10.已知函数的部分图象如图所示,,则()A.函数在上单调递减B.函数在上的值域为C.D.曲线在处的切线斜率为11.如图,在棱长为4的正方体中,E,F,G分别为棱,,的中点,点P为线段上的动点,则()A.两条异面直线和所成的角为B.存在点P,使得平面C.对任意点P,平面平面小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comD.点到直线的距离为412.已知直线交轴于点P,圆,过点P作圆M的两条切线,切点分别为A,B,直线与交于点C,则()A.若直线l与圆M相切,则B.当时,四边形的面积为C.直线经过一定点D.已知点,则为定值三、填空题:本题共4小题,每小题5分,共20分.13.若命题“”是假命题,则实数的最大值为______.14.在的展开式中,前三项的系数成等差数列,则展开式中含x项的系数为________.15.如图,在等边三角形ABC中,,点N为AC的中点,点M是边CB(包括端点)上的一个动点,则的最大值为___________.16.函数,若关于x的不等式的解集为,则实数a的取值范围为__________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.记的内角A,B,C的对边分别为a,b,c,已知.(1)求B;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(2)设,若点M是边上一点,,且,求的面积.18.已知是首项为2,公差为3的等差数列,数列满足.(1)证明是等比数列,并求的通项公式;(2)若数列与中有公共项,即存在,使得成立.按照从小到大的顺序将这些公共项排列,得到一个新的数列,记作,求.19.如图,在三棱柱中,侧面,已知,,是棱的中点.(1)求二面角的正弦值;(2)在棱上是否存在一点,使得与平面所成角的正弦值为?若存在,求;若不存在,请说明理由.20.某商场为了回馈广大顾客,设计了一个抽奖活动,在抽奖箱中...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2015年高考数学试卷(理)(安徽)(解析卷).pdf
2015年高考数学试卷(理)(安徽)(解析卷).pdf
免费
0下载
2024年新高考数学复习资料专题8.6 抛物线(解析版).docx
2024年新高考数学复习资料专题8.6 抛物线(解析版).docx
免费
0下载
2024年新高考数学复习资料第14讲 函数的图象(原卷版).docx
2024年新高考数学复习资料第14讲 函数的图象(原卷版).docx
免费
0下载
2025届高中数学一轮复习课件:第五章 第6讲 第1课时正、余弦定理(共77张ppt).pptx
2025届高中数学一轮复习课件:第五章 第6讲 第1课时正、余弦定理(共77张ppt).pptx
免费
0下载
《五年高考题分类训练》数学(2019-2023)专题七 复数.docx
《五年高考题分类训练》数学(2019-2023)专题七 复数.docx
免费
18下载
2024年新高考数学复习资料专题03  正余弦定理及其应用(原卷版).docx
2024年新高考数学复习资料专题03 正余弦定理及其应用(原卷版).docx
免费
0下载
2025年新高考数学复习资料8.2 空间点、线、面的位置关系(含答案).docx
2025年新高考数学复习资料8.2 空间点、线、面的位置关系(含答案).docx
免费
0下载
2008年高考数学试卷(文)(四川)(非延考区)(解析卷).pdf
2008年高考数学试卷(文)(四川)(非延考区)(解析卷).pdf
免费
0下载
精品解析:上海市徐汇区2023届高三二模数学试题(原卷版).docx
精品解析:上海市徐汇区2023届高三二模数学试题(原卷版).docx
免费
0下载
2021年高考数学试卷(文)(全国乙卷)(新课标Ⅰ)(解析卷).pdf
2021年高考数学试卷(文)(全国乙卷)(新课标Ⅰ)(解析卷).pdf
免费
0下载
高中数学·必修第一册(湘教版)课时作业(word)  课时作业(十八).docx
高中数学·必修第一册(湘教版)课时作业(word) 课时作业(十八).docx
免费
4下载
上海市普陀区2020年高三第一学期期末(一模)数学答案(word版).docx
上海市普陀区2020年高三第一学期期末(一模)数学答案(word版).docx
免费
0下载
2023《微专题·小练习》·数学·理科·L-3专练45 空间向量的应用.docx
2023《微专题·小练习》·数学·理科·L-3专练45 空间向量的应用.docx
免费
20下载
精品解析:江苏省南通市如皋市2024届高三下学期2月诊断测试数学试题(原卷版).docx
精品解析:江苏省南通市如皋市2024届高三下学期2月诊断测试数学试题(原卷版).docx
免费
0下载
2017年天津市高考数学试卷(文科).doc
2017年天津市高考数学试卷(文科).doc
免费
0下载
精品解析:上海市青浦区2023届高三一模数学试题(原卷版).docx
精品解析:上海市青浦区2023届高三一模数学试题(原卷版).docx
免费
0下载
【高考数学】备战2024年(新高考专用)专题12 概率(3大易错点分析+解题模板+举一反三+易错题通关)-备战2024年高考数学考试易错题(新高考专用)(解析版).docx
【高考数学】备战2024年(新高考专用)专题12 概率(3大易错点分析+解题模板+举一反三+易错题通关)-备战2024年高考数学考试易错题(新高考专用)(解析版).docx
免费
0下载
2024年新高考数学复习资料素养拓展19 等差数列中Sn的最值问题(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
2024年新高考数学复习资料素养拓展19 等差数列中Sn的最值问题(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
免费
0下载
2024年高考数学试卷(文)(全国甲卷)(解析卷) (2).docx
2024年高考数学试卷(文)(全国甲卷)(解析卷) (2).docx
免费
0下载
高中数学高考数学10大专题技巧--专题33  探究是否存在点型问题(教师版).docx
高中数学高考数学10大专题技巧--专题33 探究是否存在点型问题(教师版).docx
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群