精品解析:2023届江苏省南京市第一中学高三下学期高考适应性考试数学试题(解析版).docx本文件免费下载 【共35页】

精品解析:2023届江苏省南京市第一中学高三下学期高考适应性考试数学试题(解析版).docx
精品解析:2023届江苏省南京市第一中学高三下学期高考适应性考试数学试题(解析版).docx
精品解析:2023届江苏省南京市第一中学高三下学期高考适应性考试数学试题(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com2022—2023学年下期高2023届高考适应性考试数学试题一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集,集合,,则()A.B.C.D.【答案】B【解析】【分析】根据集合的交并补运算即可结合选项逐一求解.【详解】由题意可得,,或,对于A,或,故A错误,对于B,,故B正确,对于C,,故C错误,对于D,,故D错误,故选:B2.已知复数满足,则的共轭复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】【分析】先对化简,然后求出复数,从而可求出的共轭复数在复平面内对应的点,进而可得答案.【详解】由,得,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以,对应的点为.的共轭复数在复平面内对应的点位于第四象限,故选:D.3.在一段时间内,若甲去参观市博物馆的概率0.6,乙去参观市博物馆的概率为0.5,且甲乙两人各自行动,则在这段时间内,甲乙两人至少有一个去参观博物馆的概率是()A.0.3B.0.32C.0.8D.0.84【答案】C【解析】【分析】利用对立事件与独立事件的概率公式求解即可.【详解】依题意,在这段时间内,甲乙都不去参观博物馆的概率为,所以在这段时间内,甲乙两人至少有一个去参观博物馆的概率是.故选:C.4.在中,角A,B,C所对的边分别是a,b,c,,,,则()A.B.或C.D.或【答案】C【解析】【分析】先利用正弦定理求出,再由同角三角函数的平方关系求得,但需要注意根据“大边对大角”的性质,对的值进行取舍.【详解】由正弦定理得,,即,得,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以,因为,所以,所以,即.故选:C.5.斐波那契数列可以用如下方法定义:,且,若此数列各项除以4的余数依次构成一个新数列,则数列的第100项为()A.0B.1C.2D.3【答案】D【解析】【分析】由题意有,且,若此数列各项除以4的余数依次构成一个新数列,可得是以6为周期的周期数列,然后求解即可.【详解】由题意有,且,若此数列各项除以4的余数依次构成一个新数列,则,,,,,,,,,则数列是以6为周期的周期数列,则,则数列的第100项为3,故选:.6.已知,设曲线在处的切线斜率为,则()A.B.C.D.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【答案】A【解析】【分析】根据导数几何意义可得,利用导数可求得在上单调递减;根据大小关系可得结论.【详解】当时,,,,,在上单调递减;,所以,而,所以,.故选:A.7.如图,已知是双曲线的左、右焦点,为双曲线上两点,满足,且,则双曲线的离心率为()A.B.C.D.【答案】D【解析】小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【分析】根据双曲线的定义和性质分析可得,进而可得,结合勾股定理运算求解.【详解】延长与双曲线交于点,因为,根据对称性可知,设,则,可得,即,所以,则,,即,可知,在中,由勾股定理得,即,解得.故选:D.【点睛】方法点睛:1.双曲线离心率(离心率范围)的求法求双曲线的离心率或离心率的范围,关键是根据已知条件确定a,b,c的等量关系或不等关系,然后把b用a,c代换,求的值;2.焦点三角形的作用在焦点三角形中,可以将圆锥曲线的定义,三角形中边角关系,如正余弦定理、勾股定理结合起来.8.已知函数,,,恒成立,则的最大值为小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com()A.B.C.D.【答案】A【解析】【分析】令,其中,分析可知,存在,使得,可得出,由题意可得出,可得出,由此可得出,令,其中,利用导数求出函数的最大值,即为的最大值.【详解】令,其中,则,令,其中,则,故函数在上为增函数,①当时,,,则,所以,,所以,存在,使得;②当时,,则,,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以,存在,使得;③当时,令,则,令,则,当时,,此时函数单调递减,当时,,此时函数单调递增,所以,,即,当...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2024年新高考数学复习资料专题03 函数的最值(值域)求法(含2021-2023高考真题)(原卷版).docx
2024年新高考数学复习资料专题03 函数的最值(值域)求法(含2021-2023高考真题)(原卷版).docx
免费
0下载
高中数学·必修第一册(北师大版)课时作业WORD  课时作业(十六).doc
高中数学·必修第一册(北师大版)课时作业WORD 课时作业(十六).doc
免费
4下载
2015年山东省高考数学试卷(理科).doc
2015年山东省高考数学试卷(理科).doc
免费
1下载
2008年高考数学试卷(理)(全国卷Ⅱ)(解析卷) (2).pdf
2008年高考数学试卷(理)(全国卷Ⅱ)(解析卷) (2).pdf
免费
0下载
2002年广东高考数学真题及答案.doc
2002年广东高考数学真题及答案.doc
免费
5下载
2025年新高考数学复习资料2025年高考一轮复习第二次月考卷01(原卷版).docx
2025年新高考数学复习资料2025年高考一轮复习第二次月考卷01(原卷版).docx
免费
0下载
2025年新高考数学复习资料专题07 函数的基本性质(八大题型+模拟精练)(原卷版).docx
2025年新高考数学复习资料专题07 函数的基本性质(八大题型+模拟精练)(原卷版).docx
免费
0下载
2016年高考数学试卷(文)(浙江)(空白卷).pdf
2016年高考数学试卷(文)(浙江)(空白卷).pdf
免费
0下载
2015年高考数学试卷(理)(新课标Ⅱ)(空白卷) (9).pdf
2015年高考数学试卷(理)(新课标Ⅱ)(空白卷) (9).pdf
免费
0下载
高中2024版考评特训卷·数学【新教材】考点练105.docx
高中2024版考评特训卷·数学【新教材】考点练105.docx
免费
0下载
2004年海南高考理科数学真题及答案.doc
2004年海南高考理科数学真题及答案.doc
免费
20下载
2020年高考数学试卷(理)(新课标Ⅰ)(空白卷) (1).pdf
2020年高考数学试卷(理)(新课标Ⅰ)(空白卷) (1).pdf
免费
0下载
2018年全国统一高考数学试卷(文科)(新课标ⅰ).doc
2018年全国统一高考数学试卷(文科)(新课标ⅰ).doc
免费
0下载
2012年高考数学试卷(文)(四川)(空白卷).doc
2012年高考数学试卷(文)(四川)(空白卷).doc
免费
0下载
2024年高考数学试卷(新课标Ⅱ卷)(空白卷) (9).docx
2024年高考数学试卷(新课标Ⅱ卷)(空白卷) (9).docx
免费
0下载
2000年高考数学真题(文科)(天津自主命题).doc
2000年高考数学真题(文科)(天津自主命题).doc
免费
27下载
2024年新高考数学复习资料专题18 抛物线中的参数及范围问题(原卷版).docx
2024年新高考数学复习资料专题18 抛物线中的参数及范围问题(原卷版).docx
免费
0下载
专题22平面向量第一缉(原卷版)-备战2022年高中数学联赛之历年真题分类汇编(2015-2021).docx
专题22平面向量第一缉(原卷版)-备战2022年高中数学联赛之历年真题分类汇编(2015-2021).docx
免费
27下载
2017年高考数学试卷(文)(新课标Ⅰ)(解析卷) (7).pdf
2017年高考数学试卷(文)(新课标Ⅰ)(解析卷) (7).pdf
免费
0下载
2008年高考数学试卷(理)(全国卷Ⅱ)(空白卷) (5).pdf
2008年高考数学试卷(理)(全国卷Ⅱ)(空白卷) (5).pdf
免费
0下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群