小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com2023届江苏省南京市高三二模数学试题注意事项:1.本试卷考试时间为120分钟,试卷满分150分,考试形式闭卷.2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上.第Ⅰ卷(选择题共60分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把答案填涂在答题卡相应位置上.1.集合的子集个数为()A.2B.4C.8D.16【答案】B【解析】【分析】确定,再计算子集个数得到答案.【详解】,故子集个数为.故选:B2.已知复数满足,其中为虚数单位,则为()A.B.C.D.【答案】C【解析】【分析】计算,再计算共轭复数得到答案.【详解】,则.故选:C3.在中,角,,的对边分别为,,.若,则角的大小为()A.B.C.D.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【答案】B【解析】【分析】根据正弦定理结合三角恒等变换得到,解得答案.【详解】,即,即,,则,,则,故,,故,.故选:B4.在运动会中,甲、乙、丙参加了跑步、铅球、标枪三个项目,每人参加的比赛项目不同.已知①乙没有参加跑步;②若甲参加铅球,则丙参加标枪;③若丙没有参加铅球,则甲参加铅球.下列说法正确的为()A.丙参加了铅球B.乙参加了铅球C.丙参加了标枪D.甲参加了标枪【答案】A【解析】【分析】由①可得乙参加铅球或标枪,假设乙参加铅球,推出矛盾得到乙参加标枪,从而得到丙、甲所参加的项目,即可判断.【详解】由①乙没有参加跑步,则乙参加铅球或标枪,若乙参加铅球,则丙就没有参加铅球,由③可知甲参加铅球,故矛盾,所以乙参加标枪,显然丙没有参加标枪,则丙参加铅球,甲参加跑步,综上可得:甲参加跑步,乙参加标枪,丙参加铅球.故选:A5.大衍数列来源于《乾坤谱》中对易传“大衍之数五十”的推论,主要用于解释中国传统文化中的太极衍生小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com即太极生两仪原理,如图所示(图中表示太极,表示阳仪、表示阴仪).若数列的每一项都代表太极衍生过程中经历过的两仪数量总和,即为天一对应的经历过的两仪数量总和0,为衍生到地二时经历过的两仪数量总和2,为衍生到天三时经历过的两仪数量总和4,…,按此规律,则为()A.84B.98C.112D.128【答案】C【解析】【分析】表示衍生到天十五时经历过的两仪数量总和,计算得到答案.【详解】表示衍生到天十五时经历过的两仪数量总和,则.故选:C6.直角三角形中,斜边长为2,绕直角边所在直线旋转一周形成一个几何体.若该几何体外接球表面积为,则长为()A.B.1C.D.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【答案】D【解析】【分析】设,则,依题意可得旋转后得到的几何体为圆锥,根据外接球的表面积求出球的半径,设外接球的球心为,则球心在直线上,利用勾股定理得到方程,即可求出.【详解】设,因为,所以,绕直角边所在直线旋转一周形成一个几何体为圆锥,设圆锥外接球的半径为,所以,解得,设外接球的球心为,则球心在直线上,所以,解得.故选:D7.已知椭圆,为其左焦点,直线与椭圆交于点,,且.若,则椭圆的离心率为()A.B.C.D.【答案】A【解析】小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【分析】设椭圆的右焦点为,连接,,设,根据余弦定理得到,计算得到离心率.【详解】设椭圆的右焦点为,连接,,故四边形为平行四边形,设,,则,,,,中,,整理得到,即,故.故选:A8.已知函数是定义在上的可导函数,其导函数为.若对任意有,,且,则不等式的解集为()A.B.C.D.【答案】D【解析】【分析】构造,确定函数单调递增,计算,,转化得到,根据单调性得到答案.【详解】设,则恒成立,故函数在上单调递增.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com,则,即,故.,即,即,故,解得.故选:D二、选择题:本大题共4小题,每小题5分...