高中数学高考数学10大专题技巧--专题20 数列不等式恒成立与存在性问题大题(教师版).docx本文件免费下载 【共16页】

高中数学高考数学10大专题技巧--专题20 数列不等式恒成立与存在性问题大题(教师版).docx
高中数学高考数学10大专题技巧--专题20 数列不等式恒成立与存在性问题大题(教师版).docx
高中数学高考数学10大专题技巧--专题20 数列不等式恒成立与存在性问题大题(教师版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题20数列不等式恒成立与存在性问题大题考点一由数列不等式恒成立求参数【基本题型】[例1]已知各项均不相等的等差数列{an}的前四项和S4=14,且a1,a3,a7成等比数列.(1)求数列{an}的通项公式;(2)设Tn为数列前n项的和,若λTn≤an+1对一切n∈N*恒成立,求实数λ的最大值.解析(1)设公差为d,由已知得解得d=1或d=0(舍去),所以a1=2,所以an=n+1.(2)因为=-,所以Tn=++…+-=-=,又λTn≤an+1对一切n∈N*恒成立,所以λ≤=2+8,而2+8≥16,当且仅当n=2时等号成立.所以λ≤16,即λ的最大值为16.[例2]已知各项均不相等的等差数列{an}的前4项和为14,且a1,a3,a7恰为等比数列{bn}的前3项.(1)分别求数列{an},{bn}的前n项和Sn,Tn;(2)设Kn为数列{anbn}的前n项和,若不等式λSnTn≥Kn+n对一切n∈N*恒成立,求实数λ的最小值.解析(1)设数列{an}的公差为d,则解得d=1或d=0(舍去),a1=2,所以an=n+1,Sn=.bn=2n,Tn=2n+1-2.(2)由题意得Kn=2×21+3×22+…+(n+1)×2n,①则2Kn=2×22+3×23+…+n×2n+(n+1)×2n+1,②①-②得-Kn=2×21+22+23+…+2n-(n+1)×2n+1,∴Kn=n×2n+1.要使λSnTn≥Kn+n对一切n∈N*恒成立,即λ≥=恒成立,设g(n)=,因为==<<1,所以g(n)随n的增加而减小,所以g(n)max=g(1)=,所以当λ≥时不等式恒成立,因此λ的最小值为.[例3](2021·浙江)已知数列{an}的前n项和为Sn,a1=-,且4Sn+1=3Sn-9(n∈N*).(1)求数列{an}的通项公式;(2)设数列{bn}满足3bn+(n-4)an=0(n∈N*),记{bn}的前n项和为Tn.若Tn≤λbn对任意n∈N*恒成立,求实数λ的取值范围.解析(1)因为4Sn+1=3Sn-9,所以当n≥2时,4Sn=3Sn-1-9,两式相减可得4an+1=3an,即=.当n=1时,4S2=4=--9,解得a2=-,所以=.所以数列{an}是首项为-,公比为的等比数列,所以an=-×=-.(2)因为3bn+(n-4)an=0,所以bn=(n-4)·.所以Tn=-3×-2×-1×+0×+…+(n-4)·,①小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以Tn=-3×-2×-1×+0×+…+(n-5)·+(n-4)·,②①-②得Tn=-3×+++…+-(n-4)·=-+-(n-4)·=-n·,所以Tn=-4n·.因为Tn≤λbn对任意n∈N*恒成立,所以-4n·≤λ(n-4)·恒成立,即-3n≤λ(n-4)恒成立.当n<4时,λ≤=-3-,此时λ≤1;当n=4时,-12≤0恒成立;当n>4时,λ≥=-3-,此时λ≥-3.所以-3≤λ≤1,即实数λ的取值范围为[-3,1].[例4]数列{an}的前n项和为Sn,2Sn=an+1-2n+1+1,n∈N*,且a1,a2+5,19成等差数列.(1)求a1的值;(2)证明为等比数列,并求数列{an}的通项公式;(3)设bn=log3(an+2n),若对任意的n∈N*,不等式bn(1+n)-λn(bn+2)-6<0恒成立,试求实数λ的取值范围.解析(1)在2Sn=an+1-2n+1+1,n∈N*中,令n=1,得2S1=a2-22+1,即a2=2a1+3,①又2(a2+5)=a1+19,②.则由①②解得a1=1.(2)当n≥2时,由③-④得2an=an+1-an-2n,则+1=,又a2=5,则+1=.∴数列是以为首项,为公比的等比数列,∴+1=×n-1,即an=3n-2n.(3)由(2)可知,bn=log3(an+2n)=n.当bn(1+n)-λn(bn+2)-6<0恒成立时,即(1-λ)n2+(1-2λ)n-6<0(n∈N*)恒成立.设f(n)=(1-λ)n2+(1-2λ)n-6(n∈N*),当λ=1时,f(n)=-n-6<0恒成立,则λ=1满足条件;当λ<1时,由二次函数性质知不恒成立;当λ>1时,由于对称轴n=-<0,则f(n)在[1,+∞)上单调递减,f(n)≤f(1)=-3λ-4<0恒成立,则λ>1满足条件,综上所述,实数λ的取值范围是[1,+∞).[例5]设函数f(x)=+(x>0),数列{an}满足a1=1,an=f(),n∈N*,且n≥2.(1)求数列{an}的通项公式;(2)对n∈N*,设Sn=+++…+,若Sn≥恒成立,求实数t的取值范围.解析:(1)由an=f()得,an-an-1=,n∈N*,n≥2,所以{an}是首项为1,公差为的等差数列.所以an=1+(n-1)=,n∈N*.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2023《大考卷》二轮专项分层特训卷•数学·文科【统考版】热点问题专练 12.docx
2023《大考卷》二轮专项分层特训卷•数学·文科【统考版】热点问题专练 12.docx
免费
30下载
上海市奉贤区2022年高三第一学期期末(一模)数学答案.docx
上海市奉贤区2022年高三第一学期期末(一模)数学答案.docx
免费
0下载
2014年高考数学试卷(文)(新课标Ⅱ)(解析卷) (2).pdf
2014年高考数学试卷(文)(新课标Ⅱ)(解析卷) (2).pdf
免费
0下载
1996年北京高考理科数学真题及答案.doc
1996年北京高考理科数学真题及答案.doc
免费
25下载
2015年高考数学试卷(文)(陕西)(解析卷).doc
2015年高考数学试卷(文)(陕西)(解析卷).doc
免费
0下载
2006年重庆高考理科数学真题及答案.doc
2006年重庆高考理科数学真题及答案.doc
免费
12下载
高中2024版考评特训卷·数学【新教材】考点练63.docx
高中2024版考评特训卷·数学【新教材】考点练63.docx
免费
0下载
2024年高考数学试卷(新课标Ⅰ卷)(空白卷) (10).docx
2024年高考数学试卷(新课标Ⅰ卷)(空白卷) (10).docx
免费
0下载
2014年高考数学试卷(理)(大纲版)(解析卷).pdf
2014年高考数学试卷(理)(大纲版)(解析卷).pdf
免费
0下载
专题06 立体几何(解答题)(文科)(解析版).docx
专题06 立体几何(解答题)(文科)(解析版).docx
免费
0下载
高中数学高考数学10大专题技巧--专题03 用an与Sn的关系求通项公式(教师版).docx
高中数学高考数学10大专题技巧--专题03 用an与Sn的关系求通项公式(教师版).docx
免费
0下载
二轮专项分层特训卷··高三数学·文科函数与导数(12).doc
二轮专项分层特训卷··高三数学·文科函数与导数(12).doc
免费
7下载
2024版《大考卷》全程考评特训卷·数学【新教材】考点练59.docx
2024版《大考卷》全程考评特训卷·数学【新教材】考点练59.docx
免费
5下载
高中数学·选择性必修·第二册·(RJ-A版)课时作业(word)  课时作业(十四).docx
高中数学·选择性必修·第二册·(RJ-A版)课时作业(word) 课时作业(十四).docx
免费
12下载
高考数学专题13 统计(5大易错点分析+解题模板+举一反三+易错题通关)-备战2024年高考数学考试易错题(新高考专用)(解析版).docx
高考数学专题13 统计(5大易错点分析+解题模板+举一反三+易错题通关)-备战2024年高考数学考试易错题(新高考专用)(解析版).docx
免费
0下载
2018年高考数学试卷(文)(新课标Ⅰ)(解析卷) (1).pdf
2018年高考数学试卷(文)(新课标Ⅰ)(解析卷) (1).pdf
免费
0下载
2023年上海高考数学真题及答案 .docx
2023年上海高考数学真题及答案 .docx
免费
28下载
1999年广东高考文科数学真题及答案.doc
1999年广东高考文科数学真题及答案.doc
免费
8下载
二轮专项分层特训卷··高三数学·文科热点(二) 恒成立及参数.doc
二轮专项分层特训卷··高三数学·文科热点(二) 恒成立及参数.doc
免费
19下载
高中数学高考数学10大专题技巧--专题一 函数的定义域(教师版).docx
高中数学高考数学10大专题技巧--专题一 函数的定义域(教师版).docx
免费
0下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

相关文档

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群