专题八平面向量的极化恒等式利用向量的极化恒等式可以快速对共起点(终点)的两向量的数量积问题数量积进行转化,体现了向量的几何属性,让“秒杀”向量数量积问题成为一种可能,此恒等式的精妙之处在于建立了向量的数量积与几何长度(数量)之间的桥梁,实现向量与几何、代数的巧妙结合.对于不共起点和不共终点的问题可通过平移转化法等价转化为对共起点(终点)的两向量的数量积问题,从而用极化恒等式解决.1.极化恒等式:a·b=[(a+b)2-(a-b)2]几何意义:向量的数量积可以表示为以这组向量为邻边的平行四边形的“和对角线”与“差对角线”平方差的.DBCAaba+ba-b2.平行四边形模式:如图(1),平行四边形ABCD,O是对角线交点.则:(1)AB·AD=[|AC|2-|BD|2].DBCAO图(1)DBCA图(2)3.三角形模式:如图(2),在△ABC中,设D为BC的中点,则AB·AC=|AD|2-|BD|2.三角形模式是平面向量极化恒等式的终极模式,几乎所有的问题都是用它解决.记忆:向量的数量积等于第三边的中线长与第三边长的一半的平方差.考点一平面向量数量积的定值问题【方法总结】利用极化恒等式求数量积的定值问题的步骤(1)取第三边的中点,连接向量的起点与中点;(2)利用积化恒等式将数量积转化为中线长与第三边长的一半的平方差;(3)求中线及第三边的长度,从而求出数量积的值.积化恒等式适用于求对共起点(终点)的两向量的数量积,对于不共起点和不共终点的问题可通过平移转化法等价转化为对共起点(终点)的两向量的数量积,从而用极化恒等式解决.在运用极化恒等式求数量积时,关键在于取第三边的中点,找到三角形的中线,再写出极化恒等式,难点在于求中线及第三边的长度,通常用平面几何方法或用正余弦定理求解,从而得到数量的值.【例题选讲】[例1](1)(2014·全国Ⅱ)设向量a,b满足|a+b|=,|a-b|=,则a·b=()A.1B.2C.3D.5(2)(2012·浙江)在△ABC中,M是BC的中点,AM=3,BC=10,则AB·AC=________.(3)如图所示,AB是圆O的直径,P是上的点,M,N是直径AB上关于点O对称的两点,且AB=6,MN=4,则PM·PN=()A.13B.7C.5D.3(4)如图,在平行四边形ABCD中,AB=1,AD=2,点E,F,G,H分别是AB,BC,CD,AD边上的中点,则小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comEF·FG+GH·HE=________.(5)(2016·江苏)如图,在△ABC中,D是BC的中点,E,F是AD上的两个三等分点.BA·CA=4,BF·CF=-1,则BE·CE的值为________.(6)在梯形ABCD中,满足AD∥BC,AD=1,BC=3,AB·DC=2,则AC·BD的值为________.【对点训练】1.已知正方形ABCD的边长为1,点E是AB边上的动点,则DE·DA的值为________.2.如图,△AOB为直角三角形,OA=1,OB=2,C为斜边AB的中点,P为线段OC的中点,则AP·OP=()A.1B.C.D.-3.如图,在平面四边形ABCD中,O为BD的中点,且OA=3,OC=5,若AB·AD=-7,则BC·DC的值是________.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com4.已知点A,B分别在直线x=3,x=1上,|OA-OB|=4,当|OA+OB|取最小值时,OA·OB的值是_____.A.0B.2C.3D.65.在边长为1的正三角形ABC中,D,E是边BC的两个三等分点(D靠近点B),则AD·AE等于()A.B.C.D.6.在△ABC中,|AB+AC|=|AB-AC|,AB=2,AC=1,E,F为BC的三等分点,则AE·AF等于()A.B.C.D.7.如图,在平行四边形ABCD中,已知AB=8,AD=5,CP=3PD,AP·BP=2,则AB·AD的值是()A.44B.22C.24D.728.如图,在△ABC中,已知AB=4,AC=6,∠A=60°,点D,E分别在边AB,AC上,且AB=2AD,AC=2AE,若F为DE的中点,则BF·DE的值为________.9.如图,在△ABC中,已知AB=3,AC=2,∠BAC=120°,D为边BC的中点,若CD⊥AD,垂足为E,则EB·EC=________.10.在平面四边形ABCD中,点E,F分别是边AD,BC的中点,且AB=1,EF=,CD=,若AD·BC=15.则AC·BD的值为________.考点二平面向量数量积的最值(范围)问题【方法总结】利用极化恒等式求数量积的最值(范围)问题的步骤(1)取第三边的中点,连接向量的起点与中点;(2)利用积化恒等式将数量积转...