高中数学高考数学10大专题技巧--专题八 平面向量的极化恒等式(学生版).docx.doc本文件免费下载 【共7页】

高中数学高考数学10大专题技巧--专题八 平面向量的极化恒等式(学生版).docx.doc
高中数学高考数学10大专题技巧--专题八 平面向量的极化恒等式(学生版).docx.doc
高中数学高考数学10大专题技巧--专题八 平面向量的极化恒等式(学生版).docx.doc
专题八平面向量的极化恒等式利用向量的极化恒等式可以快速对共起点(终点)的两向量的数量积问题数量积进行转化,体现了向量的几何属性,让“秒杀”向量数量积问题成为一种可能,此恒等式的精妙之处在于建立了向量的数量积与几何长度(数量)之间的桥梁,实现向量与几何、代数的巧妙结合.对于不共起点和不共终点的问题可通过平移转化法等价转化为对共起点(终点)的两向量的数量积问题,从而用极化恒等式解决.1.极化恒等式:a·b=[(a+b)2-(a-b)2]几何意义:向量的数量积可以表示为以这组向量为邻边的平行四边形的“和对角线”与“差对角线”平方差的.DBCAaba+ba-b2.平行四边形模式:如图(1),平行四边形ABCD,O是对角线交点.则:(1)AB·AD=[|AC|2-|BD|2].DBCAO图(1)DBCA图(2)3.三角形模式:如图(2),在△ABC中,设D为BC的中点,则AB·AC=|AD|2-|BD|2.三角形模式是平面向量极化恒等式的终极模式,几乎所有的问题都是用它解决.记忆:向量的数量积等于第三边的中线长与第三边长的一半的平方差.考点一平面向量数量积的定值问题【方法总结】利用极化恒等式求数量积的定值问题的步骤(1)取第三边的中点,连接向量的起点与中点;(2)利用积化恒等式将数量积转化为中线长与第三边长的一半的平方差;(3)求中线及第三边的长度,从而求出数量积的值.积化恒等式适用于求对共起点(终点)的两向量的数量积,对于不共起点和不共终点的问题可通过平移转化法等价转化为对共起点(终点)的两向量的数量积,从而用极化恒等式解决.在运用极化恒等式求数量积时,关键在于取第三边的中点,找到三角形的中线,再写出极化恒等式,难点在于求中线及第三边的长度,通常用平面几何方法或用正余弦定理求解,从而得到数量的值.【例题选讲】[例1](1)(2014·全国Ⅱ)设向量a,b满足|a+b|=,|a-b|=,则a·b=()A.1B.2C.3D.5(2)(2012·浙江)在△ABC中,M是BC的中点,AM=3,BC=10,则AB·AC=________.(3)如图所示,AB是圆O的直径,P是上的点,M,N是直径AB上关于点O对称的两点,且AB=6,MN=4,则PM·PN=()A.13B.7C.5D.3(4)如图,在平行四边形ABCD中,AB=1,AD=2,点E,F,G,H分别是AB,BC,CD,AD边上的中点,则小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comEF·FG+GH·HE=________.(5)(2016·江苏)如图,在△ABC中,D是BC的中点,E,F是AD上的两个三等分点.BA·CA=4,BF·CF=-1,则BE·CE的值为________.(6)在梯形ABCD中,满足AD∥BC,AD=1,BC=3,AB·DC=2,则AC·BD的值为________.【对点训练】1.已知正方形ABCD的边长为1,点E是AB边上的动点,则DE·DA的值为________.2.如图,△AOB为直角三角形,OA=1,OB=2,C为斜边AB的中点,P为线段OC的中点,则AP·OP=()A.1B.C.D.-3.如图,在平面四边形ABCD中,O为BD的中点,且OA=3,OC=5,若AB·AD=-7,则BC·DC的值是________.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com4.已知点A,B分别在直线x=3,x=1上,|OA-OB|=4,当|OA+OB|取最小值时,OA·OB的值是_____.A.0B.2C.3D.65.在边长为1的正三角形ABC中,D,E是边BC的两个三等分点(D靠近点B),则AD·AE等于()A.B.C.D.6.在△ABC中,|AB+AC|=|AB-AC|,AB=2,AC=1,E,F为BC的三等分点,则AE·AF等于()A.B.C.D.7.如图,在平行四边形ABCD中,已知AB=8,AD=5,CP=3PD,AP·BP=2,则AB·AD的值是()A.44B.22C.24D.728.如图,在△ABC中,已知AB=4,AC=6,∠A=60°,点D,E分别在边AB,AC上,且AB=2AD,AC=2AE,若F为DE的中点,则BF·DE的值为________.9.如图,在△ABC中,已知AB=3,AC=2,∠BAC=120°,D为边BC的中点,若CD⊥AD,垂足为E,则EB·EC=________.10.在平面四边形ABCD中,点E,F分别是边AD,BC的中点,且AB=1,EF=,CD=,若AD·BC=15.则AC·BD的值为________.考点二平面向量数量积的最值(范围)问题【方法总结】利用极化恒等式求数量积的最值(范围)问题的步骤(1)取第三边的中点,连接向量的起点与中点;(2)利用积化恒等式将数量积转...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2024年新高考数学复习资料素养拓展3 与大学高等数学接轨的三类函数(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
2024年新高考数学复习资料素养拓展3 与大学高等数学接轨的三类函数(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
免费
0下载
2024年新高考数学复习资料2024年高考数学一轮复习(新高考版) 第7章 §7.9 空间动态问题突破[培优课].docx
2024年新高考数学复习资料2024年高考数学一轮复习(新高考版) 第7章 §7.9 空间动态问题突破[培优课].docx
免费
0下载
2008年高考数学试卷(理)(陕西)(解析卷).doc
2008年高考数学试卷(理)(陕西)(解析卷).doc
免费
0下载
高中2024版考评特训卷·数学【新教材】考点练37.docx
高中2024版考评特训卷·数学【新教材】考点练37.docx
免费
0下载
2013年高考数学试卷(理)(新课标Ⅱ)(解析卷) (5).pdf
2013年高考数学试卷(理)(新课标Ⅱ)(解析卷) (5).pdf
免费
0下载
2024年新高考数学复习资料重难点突破01 集合中的新定义问题(原卷版).docx
2024年新高考数学复习资料重难点突破01 集合中的新定义问题(原卷版).docx
免费
0下载
2025年新高考数学复习资料专题19 立体几何初步(Ⅱ)(思维导图+知识清单+核心素养分析+方法归纳).docx
2025年新高考数学复习资料专题19 立体几何初步(Ⅱ)(思维导图+知识清单+核心素养分析+方法归纳).docx
免费
0下载
2025年新高考数学复习资料第05讲 数列求和(十三大题型)(讲义)(原卷版).docx
2025年新高考数学复习资料第05讲 数列求和(十三大题型)(讲义)(原卷版).docx
免费
0下载
高中数学·必修第一册(湘教版)课时作业(word)  课时作业(五十五).docx
高中数学·必修第一册(湘教版)课时作业(word) 课时作业(五十五).docx
免费
16下载
高中数学·选择性必修·第二册·湘教版课时作业WORD  课时作业(二十九).docx
高中数学·选择性必修·第二册·湘教版课时作业WORD 课时作业(二十九).docx
免费
5下载
高中2024版考评特训卷·数学·理科【统考版】点点练 33.docx
高中2024版考评特训卷·数学·理科【统考版】点点练 33.docx
免费
0下载
2024年新高考数学复习资料第05讲 对数与对数函数(讲义)(解析版).docx
2024年新高考数学复习资料第05讲 对数与对数函数(讲义)(解析版).docx
免费
0下载
高中数学·必修第四册·RJ-B课时作业(word)  课时作业 7.docx
高中数学·必修第四册·RJ-B课时作业(word) 课时作业 7.docx
免费
24下载
2016年上海市闵行区高考数学二模试卷(文科).doc
2016年上海市闵行区高考数学二模试卷(文科).doc
免费
0下载
精品解析:江苏省南通市如皋市2024届高三下学期2月诊断测试数学试题(原卷版).docx
精品解析:江苏省南通市如皋市2024届高三下学期2月诊断测试数学试题(原卷版).docx
免费
0下载
2019年高考数学试卷(理)(新课标Ⅱ)(空白卷) (4).pdf
2019年高考数学试卷(理)(新课标Ⅱ)(空白卷) (4).pdf
免费
0下载
2023年高考数学试卷(文)(全国乙卷)(解析卷) (9).docx
2023年高考数学试卷(文)(全国乙卷)(解析卷) (9).docx
免费
0下载
2014年高考数学真题(理科)(新课标Ⅰ)(解析版).doc
2014年高考数学真题(理科)(新课标Ⅰ)(解析版).doc
免费
13下载
2012年高考数学试卷(理)(浙江)(解析卷).pdf
2012年高考数学试卷(理)(浙江)(解析卷).pdf
免费
0下载
2025年新高考数学复习资料第03讲 幂函数与二次函数(八大题型)(练习)(解析版).docx
2025年新高考数学复习资料第03讲 幂函数与二次函数(八大题型)(练习)(解析版).docx
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群
提交所需资料详情,我们来帮找资料