高中数学高考数学10大专题技巧--专题四 函数的最值(值域)(学生版).docx.doc本文件免费下载 【共4页】

高中数学高考数学10大专题技巧--专题四    函数的最值(值域)(学生版).docx.doc
高中数学高考数学10大专题技巧--专题四    函数的最值(值域)(学生版).docx.doc
高中数学高考数学10大专题技巧--专题四    函数的最值(值域)(学生版).docx.doc
专题四函数的最值(值域)1.最大值与最小值的定义一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:(1)对于任意的x∈I,都有f(x)≤M;存在x0∈I,使得f(x0)=M,那么,我们称M是函数y=f(x)的最大值.(2)对于任意的x∈I,都有f(x)≥M;存在x0∈I,使得f(x0)=M,那么,我们称M是函数y=f(x)的最小值.2.常用结论(1)闭区间上的连续函数一定存在最大值和最小值.当函数在闭区间上单调时最值一定在端点处取到.(2)开区间上的“单峰”函数一定存在最大值或最小值.考点一单调性法【方法总结】利用函数的单调性求最值的方法如果一个函数为单调函数,则由定义域结合单调性(增、减)即可快速求出函数的最值(值域).(1)若函数y=f(x)在区间[a,b]上单调递增,则ymax=f(b),ymin=f(a).(2)若函数y=f(x)在区间[a,b]上单调递减,则ymax=f(a),ymin=f(b).(3)若函数y=f(x)有多个单调区间,那就先求出各区间上的最值,再从各区间的最值中决定出最大(小)值.函数的最大(小)值是整个值域范围内的最大(小)值.(4)如果函数定义域为闭区间,则不但要考虑函数在该区间上的单调性,还要考虑端点处的函数值或者发展趋势.(5)在利用单调性求值域时,若定义域有一侧趋近于或,则要估计当或时,函数值是向一个常数无限接近还是也趋近于或(即函数图象是否有水平渐近线),同样若的定义域抠去了某点或有一侧取不到边界,如,则要确定当时,的值是接近与一个常数(即临界值)还是趋向或(即函数图象是否有竖直渐近线),这样可以使得值域更加准确.【例题选讲】[例1](1)已知函数f(x)=,则函数f(x)在x∈[2,8]上的最大值为________.(2)函数f(x)=x-log2(x+2)在区间[-1,1]上的最大值为________.(3)定义新运算⊕:当a≥b时,a⊕b=a;当a<b时,a⊕b=b2,则函数f(x)=(1⊕x)x-(2⊕x),x∈[-2,2]的最大值等于()A.-1B.1C.6D.12(4)若函数f(x)=-+b(a>0)在上的值域为,则a=________,b=________.(5)设函数f(x)=在区间[3,4]上的最大值和最小值分别为M,m,则=()A.B.C.D.【对点训练】1.函数f(x)=在[-6,-2]上的最大值是________;最小值是________.2.已知函数f(x)=则f(x)的最小值是________.3.已知函数f(x)=.(1)写出函数f(x)的定义域和值域;(2)证明:函数f(x)在(0,+∞)上为单调递减函数,并求f(x)在x∈[2,8]上的最大值和最小值.4.已知f(x)=,x∈[1,+∞).(1)当a=时,用定义证明函数的单调性并求函数f(x)的最小值;(2)若对任意x∈[1,+∞),f(x)>0恒成立,试求实数a的取值范围.考点二图象法【方法总结】小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com即作出函数的图像,通过观察曲线所覆盖函数值的区域确定值域,以下函数常会考虑进行数形结合.(1)分段函数:尽管分段函数可以通过求出每段解析式的范围再取并集的方式解得值域,但对于一些便于作图的分段函数,数形结合也可很方便的计算值域.(2)的函数值为多个函数中函数值的最大值或最小值,此时需将多个函数作于同一坐标系中,然后确定靠下(或靠上)的部分为该函数的图像,从而利用图像求得函数的值域.图象法求函数最值的一般步骤【例题选讲】[例2](1)函数y=|x+1|+|x-2|的值域为________.(2)已知函数f(x)=函数f(x)的最大值为________.最小值为________.(3)对a,b∈R,记max{a,b}=函数f(x)=max{|x+1|,|x-2|}(x∈R)的最小值是________.(4)定义为中的最小值,设,则的最大值是_____.f(x)y=2x+3y=5-3xy=x2+1yx(5)设函数定义域为R,对给定正数M,定义函数则称函数为的“孪生函数”,若给定函数,则的值域为()A.B.C.D.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comf(x)y=1yx1-2【对点训练】5.函数y=|x+1|-|x-2|的最大值为________.最小值为________.6.函数f(x)=的最大值为________.7.对于任意实数a,b,定义min{a,b}=函数f(x)=-x+3,g(x)=log2x,则函数h(x)=min{f(x),g(x)}的最大值是________.8.若函数f(x)=(a>0且a≠1)的值域是[4,+∞),则实数a的取值范围是()A.(1,2]B.(0,2]C.[2,+∞)D.(1,2]考...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
高中数学·选择性必修·第一册·湘教版课时作业word  课时作业(三十七) 二项式定理(2).docx
高中数学·选择性必修·第一册·湘教版课时作业word 课时作业(三十七) 二项式定理(2).docx
免费
26下载
2019年上海市青浦区高考数学一模试卷(含解析版).doc
2019年上海市青浦区高考数学一模试卷(含解析版).doc
免费
0下载
2024年新高考数学复习资料专题22 计数原理与二项式定理(原卷版).docx
2024年新高考数学复习资料专题22 计数原理与二项式定理(原卷版).docx
免费
0下载
2016年江苏省高考数学试卷.doc
2016年江苏省高考数学试卷.doc
免费
0下载
高中数学高考数学10大专题技巧--专题05 立体几何中的截面问题(学生版).docx.doc
高中数学高考数学10大专题技巧--专题05 立体几何中的截面问题(学生版).docx.doc
免费
0下载
2024届高考数学考向核心卷—新课标版 答案.pdf
2024届高考数学考向核心卷—新课标版 答案.pdf
免费
12下载
2013年高考数学试卷(理)(陕西)(解析卷).doc
2013年高考数学试卷(理)(陕西)(解析卷).doc
免费
0下载
2000年青海高考文科数学真题及答案.doc
2000年青海高考文科数学真题及答案.doc
免费
14下载
精品解析:江苏省张家港市2023-2024学年高三下学期2月阶段性调研测试数学试卷(原卷版).docx
精品解析:江苏省张家港市2023-2024学年高三下学期2月阶段性调研测试数学试卷(原卷版).docx
免费
0下载
2025年新高考数学复习资料专题突破卷14 累加、累乘、构造法求数列通项公式(解析版).docx
2025年新高考数学复习资料专题突破卷14 累加、累乘、构造法求数列通项公式(解析版).docx
免费
0下载
高中数学·必修第一册(湘教版)课时作业(word)  课时作业(四十九) .docx
高中数学·必修第一册(湘教版)课时作业(word) 课时作业(四十九) .docx
免费
30下载
2023年高考数学试卷(新课标Ⅱ卷)(解析卷) (5).docx
2023年高考数学试卷(新课标Ⅱ卷)(解析卷) (5).docx
免费
0下载
2023《微专题·小练习》·数学·理科·L-3专练46 高考大题专练(四) 立体几何的综合运用.docx
2023《微专题·小练习》·数学·理科·L-3专练46 高考大题专练(四) 立体几何的综合运用.docx
免费
13下载
2018年高考数学试卷(上海)(秋考)(空白卷).pdf
2018年高考数学试卷(上海)(秋考)(空白卷).pdf
免费
0下载
高中数学·必修第二册(RJ-A版)课时作业 WORD  详解答案.doc
高中数学·必修第二册(RJ-A版)课时作业 WORD 详解答案.doc
免费
27下载
上海市各区高三数学一模模块汇编解析几何汇编--教师版.docx
上海市各区高三数学一模模块汇编解析几何汇编--教师版.docx
免费
0下载
2024年新高考数学复习资料易错点10  立体几何-备战2022年高考数学考试易错题(新高考专用)(学生版) .docx
2024年新高考数学复习资料易错点10 立体几何-备战2022年高考数学考试易错题(新高考专用)(学生版) .docx
免费
0下载
2012年上海市杨浦区高考数学一模试卷(理科).doc
2012年上海市杨浦区高考数学一模试卷(理科).doc
免费
0下载
高中数学·必修第四册·RJ-B课时作业(word)  课时作业 4.docx
高中数学·必修第四册·RJ-B课时作业(word) 课时作业 4.docx
免费
10下载
2015年上海市杨浦区高考数学二模试卷(文科).doc
2015年上海市杨浦区高考数学二模试卷(文科).doc
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群