专题五函数的奇偶性1.函数的奇偶性(1)奇偶性的定义奇偶性定义图象特点偶函数如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)是偶函数关于y轴对称奇函数如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)是奇函数关于原点对称(2)函数奇偶性常用结论结论1:如果函数f(x)是奇函数且在x=0处有意义,那么f(0)=0.结论2:如果函数f(x)是偶函数,那么f(x)=f(-x)=f(|x|).结论3:若函数y=f(x+b)是定义在R上的奇函数,则函数y=f(x)关于点(b,0)中心对称.结论4:若函数y=f(x+a)是定义在R上的偶函数,则函数y=f(x)关于直线x=a对称.结论5:已知函数f(x)是定义在区间D上的奇函数,则对任意的x∈D,都有f(x)+f(-x)=0.特别地,若奇函数f(x)在D上有最值,则f(x)max+f(x)min=0.推论1:若函数f(x)是奇函数,且g(x)=f(x)+c,则必有g(-x)+g(x)=2c.推论2:若函数f(x)是奇函数,且g(x)=f(x)+c,则必有g(x)max+g(x)min=2c.结论6:在公共定义域内有:奇±奇=奇;偶±偶=偶;奇±偶=非奇非偶;奇奇=偶,偶偶=偶,奇偶=奇.结论7:若函数f(x)的定义域关于原点对称,则函数f(x)能表示成一个偶函数与一个奇函数的和的形式.记g(x)=[f(x)+f(-x)],h(x)=[f(x)-f(-x)],则f(x)=g(x)+h(x).结论8:奇函数在其定义域内关于原点对称的两个区间上具有相同的单调性;偶函数在其定义域内关于原点对称的两个区间上具有相反的单调性.结论9:偶函数在其定义域内关于原点对称的区间上有相同的最大(小)值,取最值时的自变量互为相反数;奇函数在其定义域内关于原点对称的区间上的最值互为相反数,取最值时的自变量也互为相反数.结论10:复合函数y=f[g(x)]的奇偶性:内偶则偶,两奇为奇.结论11:指数型函数的奇偶性(1)函数f(x)=ax+a-x(a>0且a≠1)是偶函数;(2)函数f(x)=ax-a-x(a>0且a≠1)是奇函数;(3)函数f(x)=(a>0且a≠1)是奇函数;(4)函数f(x)==(a>0且a≠1)是奇函数;结论12:对数型函数的奇偶性(1)函数f(x)=loga(a>0且a≠1)是奇函数;函数f(x)=loga(a>0且a≠1)是奇函数;(2)函数f(x)=loga(a>0且a≠1)是奇函数;函数f(x)=loga(a>0且a≠1)是奇函数;(3)函数f(x)=loga(a>0且a≠1)是奇函数;函数f(x)=loga(a>0且a≠1)是奇函数;(4)函数f(x)=loga(±mx)(a>0且a≠1)是奇函数.2.函数的对称性(奇偶性的推广)(1)函数的轴对称定理1:如果函数y=f(x)满足f(x+a)=f(b-x),则函数y=f(x)的图象关于直线x=对称.推论1:如果函数y=f(x)满足f(a+x)=f(a-x),则函数y=f(x)的图象关于直线x=a对称.推论2:如果函数y=f(x)满足f(x)=f(-x),则函数y=f(x)的图象关于直线x=0(y轴)对称,就是偶函数的定义,它是上述定理1的简化.(2)函数的点对称定理2:如果函数y=f(x)满足f(a+x)+f(a-x)=2b,则函数y=f(x)的图象关于点(a,b)对称.推论1:如果函数y=f(x)满足f(a+x)+f(a-x)=0,则函数y=f(x)的图象关于点(a,0)对称.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com推论2:如果函数y=f(x)满足f(x)+f(-x)=0,则函数y=f(x)的图象关于原点(0,0)对称,就是奇函数的定义,它是上述定理2的简化.(3)两个等价关系若函数y=f(x)关于直线x=a轴对称,则以下三式成立且等价:f(a+x)=f(a-x)f(2a-x)=f(x)f(2a+x)=f(-x)若函数y=f(x)关于点(a,0)中心对称,则以下三式成立且等价:f(a+x)=-f(a-x)f(2a-x)=-f(x)f(2a+x)=-f(-x)考点一判断函数的奇偶性【方法总结】判断函数的奇偶性:首先看函数的定义域是否关于原点对称;在定义域关于原点对称的条件下,再化简解析式,根据f(-x)与f(x)的关系作出判断.分段函数奇偶性的判断,要分别从x>0或x<0来寻找等式f(-x)=f(x)或f(-x)=-f(x)成立,只有当对称的两个区间上满足相同关系时,分段函数才具有确定的奇偶性.用函数奇偶性常用结论6或特值法可秒杀.【例题选讲】[例1](1)下列函数为偶函数的是()A.y=tanB.y=x2+e|x|C.y=xcosxD.y=ln|x|-sinx(2)下列函数中,既不是奇函数,也不是偶函数的是()A.y=x+s...