专题04 三角函数与解三角形(三大题型,16区二模新题速递)(解析版)-【好题汇编】2024年高考数学二模试题分类汇编(上海专用).docx本文件免费下载 【共45页】

专题04 三角函数与解三角形(三大题型,16区二模新题速递)(解析版)-【好题汇编】2024年高考数学二模试题分类汇编(上海专用).docx
专题04 三角函数与解三角形(三大题型,16区二模新题速递)(解析版)-【好题汇编】2024年高考数学二模试题分类汇编(上海专用).docx
专题04 三角函数与解三角形(三大题型,16区二模新题速递)(解析版)-【好题汇编】2024年高考数学二模试题分类汇编(上海专用).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题04三角函数与解三角形(三大题型,16区二模新题速递)选题列表2024·上海杨浦·二模2024·上海奉贤·二模2024·上海浦东·二模2024·上海青浦·二模2024·上海黄浦·二模2024·上海闵行·二模2024·上海普陀·二模2024·上海金山·二模2024·上海徐汇·二模2024·上海静安·二模2024·上海松江·二模2024·上海长宁·二模2024·上海嘉定·二模2024·上海崇明·二模2024·上海虹口·二模2024·上海宝山·二模汇编目录一、题型一:三角函数............................................................................................................................................2二、题型二:三角恒等变换..................................................................................................................................14三、题型三:解三角形..........................................................................................................................................27一、题型一:三角函数小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com1.(2024·上海徐汇·二模)已知函数,其中,实数,下列选项中正确的是()A.若,函数关于直线对称B.若,函数在上是增函数C.若函数在上最大值为1,则D.若,则函数的最小正周期是【答案】C【分析】求出即可判断选项A;由正弦函数的单调性即可判断B;由正弦函数的性质可得关于的不等式,从而可求出的取值范围,即可判断C;判断,即可判断D.【详解】对于A,若,则,,不是最值,所以不关于直线对称,故A错误;对于B,若,则,当时,,因为正弦函数在上不单调,所以函数在上不是增函数,故B错误;对于C,,则,因为函数在上最大值为1,所以,解得,故C正确;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com对于D,若,函数,因为,所以函数的最小正周期不是,故D错误.故选:C.2.(2024·上海奉贤·二模)已知函数,其中,,其中,则图象如图所示的函数可能是().A.B.C.D.【答案】A【分析】根据函数图象和的奇偶性判断.【详解】易知是偶函数,是奇函数,给出的函数图象对应的是奇函数,A.,定义域为R,又,所以是奇函数,符合题意,故正确;B.,,不符合图象,故错误;C.,定义域为R,但,故函数是非奇非偶函数,故错误;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comD.,定义域为R,但,故函数是非奇非偶函数,故错误,故选:A3.(2024·上海闵行·二模)已知,集合,,.关于下列两个命题的判断,说法正确的是()命题①:集合表示的平面图形是中心对称图形;命题②:集合表示的平面图形的面积不大于.A.①真命题;②假命题B.①假命题;②真命题C.①真命题;②真命题D.①假命题;②假命题【答案】A【分析】根据是奇函数,可以分析出当时,所以集合表示的平面图形是中心对称图形;结合集合代表的曲线及不等式的范围可以确定集合表示的平面图形,从而求得面积,与进行比较.【详解】对于,集合关于原点中心对称,且函数是奇函数,若则则,即若则,即集合表示的平面图形是关于原点中心对称图形,故①是真命题;对于,由即知,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com设,则与一一对应且随的增大而增大,,又由知,结合知在范围内,与一一对应且随的增大而减小,所以在范围内,与一一对应且是关于的减函数,由①可知图象关于原点中心对称,所以可得到在的图象,如图代入点可得,所以的区域是右半部分,面积为正方形面积的一半,即集合表示的平面图形的面积,故②是假命题.故选:A.【点睛】方法点睛:确定不等式表示的区域范围第一步:得到等式对应的曲线;第二步:任选一个不在曲线上的点,若原点不在曲线上,一般选择原点,检验它的坐标是否符合不等式;第三步:如果符合,则该点所在的一侧区域即为不等式所表示的区域;若不符合,则另一侧区域为不等式所表示的区域.4....

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
【免费下载】湖南2016年高考数学真题(理科)(新课标Ⅰ)(原卷版).doc
【免费下载】湖南2016年高考数学真题(理科)(新课标Ⅰ)(原卷版).doc
免费
0下载
2025年新高考数学复习资料第08讲 函数模型及其应用(五大题型)(练习)(原卷版).docx
2025年新高考数学复习资料第08讲 函数模型及其应用(五大题型)(练习)(原卷版).docx
免费
0下载
2024年新高考数学复习资料专题8.4 椭圆(解析版).docx
2024年新高考数学复习资料专题8.4 椭圆(解析版).docx
免费
0下载
2024年新高考数学复习资料大题03 立体几何(7大题型)(原卷版).docx
2024年新高考数学复习资料大题03 立体几何(7大题型)(原卷版).docx
免费
0下载
2025年新高考数学复习资料重难点突破08 利用导数解决一类整数问题(四大题型)(原卷版).docx
2025年新高考数学复习资料重难点突破08 利用导数解决一类整数问题(四大题型)(原卷版).docx
免费
0下载
高考数学解题技巧归纳专题01 函数相关技巧(新高考地区专用)(解析版).docx
高考数学解题技巧归纳专题01 函数相关技巧(新高考地区专用)(解析版).docx
免费
1下载
2024年新高考数学复习资料素养拓展07 导数中利用构造函数解不等式(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
2024年新高考数学复习资料素养拓展07 导数中利用构造函数解不等式(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
免费
0下载
专题41平面解析几何第一缉(解析版)-备战2022年高中数学联赛之历年真题分类汇编(2015-2021).docx
专题41平面解析几何第一缉(解析版)-备战2022年高中数学联赛之历年真题分类汇编(2015-2021).docx
免费
17下载
2014年天津市高考数学试卷(理科)往年高考真题.doc
2014年天津市高考数学试卷(理科)往年高考真题.doc
免费
0下载
高中数学·必修第一册(RJ-A版)课时作业WORD  课时作业 26.docx
高中数学·必修第一册(RJ-A版)课时作业WORD 课时作业 26.docx
免费
4下载
2012年高考数学试卷(理)(湖北)(空白卷).pdf
2012年高考数学试卷(理)(湖北)(空白卷).pdf
免费
0下载
2024年新高考数学复习资料专题14 函数的图象(二)(含2021-2023高考真题)(原卷版).docx
2024年新高考数学复习资料专题14 函数的图象(二)(含2021-2023高考真题)(原卷版).docx
免费
0下载
高中2024版考评特训卷·数学【新教材】考点练19.docx
高中2024版考评特训卷·数学【新教材】考点练19.docx
免费
0下载
高中2022·微专题·小练习·数学·理科【统考版】专练39.docx
高中2022·微专题·小练习·数学·理科【统考版】专练39.docx
免费
0下载
2022·微专题·小练习·数学【新高考】专练47.docx
2022·微专题·小练习·数学【新高考】专练47.docx
免费
8下载
2013年高考数学试卷(文)(重庆)(空白卷) (1).docx
2013年高考数学试卷(文)(重庆)(空白卷) (1).docx
免费
0下载
2018年全国统一高考数学试卷(文科)(新课标ⅱ)+往年高考真题.doc
2018年全国统一高考数学试卷(文科)(新课标ⅱ)+往年高考真题.doc
免费
0下载
2010年高考数学真题(文科)(新课标)(解析版).doc
2010年高考数学真题(文科)(新课标)(解析版).doc
免费
8下载
2024版《大考卷》全程考评特训卷·数学【新教材】考点练14.docx
2024版《大考卷》全程考评特训卷·数学【新教材】考点练14.docx
免费
3下载
2025年新高考数学复习资料2025届高中数学一轮复习练习:第七章 限时跟踪检测(三十八) 数列求和(含解析).docx
2025年新高考数学复习资料2025届高中数学一轮复习练习:第七章 限时跟踪检测(三十八) 数列求和(含解析).docx
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群