精品解析:上海市金山区2022届高三下学期二模数学试题(解析版).docx本文件免费下载 【共26页】

精品解析:上海市金山区2022届高三下学期二模数学试题(解析版).docx
精品解析:上海市金山区2022届高三下学期二模数学试题(解析版).docx
精品解析:上海市金山区2022届高三下学期二模数学试题(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com金山区2021学年第二学期质量监控高三数学试卷一填空题(本大题共有、12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1.已知集合,若,则实数的值为__________.【答案】0【解析】【分析】解方程即得解.【详解】解:因为,所以(舍去)或,所以.故答案为:02.已知(为虚数单位),则___________.【答案】##【解析】【分析】根据复数代数的四则运算计算即可.【详解】,.故答案为:.3.在正项等比数列中,,,则的公比为___________.【答案】3【解析】【分析】由题设知等比数列公比,根据已知条件及等比数列通项公式列方程求公比即可.【详解】由题设,等比数列公比,且,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以,可得或(舍),故的公比为3.故答案为:34.的二项展开式中项的系数为__________.(结果用数字作答)【答案】24【解析】【分析】利用二项式展开式的通项公式,即可求得答案.【详解】由题意可得的通项公式为:,故项的系数为,故答案为:245.若正方体的棱长为2,则顶点到平面的距离为__________.【答案】【解析】【分析】连接交于,连接,先证明平面,再求即可【详解】连接交于,连接,因为正方体,故,且平面,又平面,故,又平面,,故平面,故顶点到平面的距离为.又正方体的棱长为2,故小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com故答案为:6.不等式组表示的平面区域的面积等于__________.【答案】25【解析】【分析】画出可行域,再分别求得可行域的顶点,进而求得底和高即可【详解】画出可行域如图,解得,解得,解得,故,到的距离为,故不等式组,表示的平面区域的面积等于故答案为:7.已知向量,则函数的单调递增区间为__________.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【答案】【解析】【分析】根据数量积的坐标公式,结合三角恒等变换公式化简可得,再求解单调递减区间,结合求解即可【详解】由题意,,故的单调递增区间:,即,故在的单调递增区间为故答案为:8.将一枚骰子先后抛两次,则向上的点数之积为12的概率为__________.(结果用最简分数表示)【答案】【解析】【分析】将一枚骰子先后抛两次,先计算所有可能的情况数,再分析其中向上的点数之积为12的情况数,进而求得概率即可【详解】由题意,将一枚骰子先后抛两次,所有可能的情况有种,其中向上的点数之积为12的情况有共4种情况,故向上的点数之积为12的概率为小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com故答案为:9.过抛物线的焦点且斜率为的直线交抛物线于A,两点,,则的值为__________.【答案】2【解析】【分析】求出直线的方程,与抛物线的方程联立,利用根与系数的关系可,,由抛物线的定义可知,,,即可得到.【详解】解:抛物线的焦点,,准线方程为,设,,,,则直线的方程为,代入可得,,,由抛物线的定义可知,,,,解得.故答案为:2.10.已知平面向量满足,若关于的方程有实数解,则面积的最大值为__________.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【答案】【解析】【分析】对两边平方有有解,再利用基本不等式可得,进而求得面积的最大值即可【详解】设,因为,故,则,显然,对两边平方有,即有解,因为,当且仅当,即时取等号.故,则面积的最大值为,当且仅当时取等号.故答案为:11.已知数列的前项和为,满足,函数定义域为,对任意都有.若,则的值为__________.【答案】【解析】【分析】先根据得出周期为4,再根据,结合通项与前小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com项和的关系可得,再结合二项式定理求得除以4的余数,进而求得即可【详解】因为,,,,…易得周期为4.又由,,两式相减,即,又当时,,解得,故数列是以为首项,3为公比的等比数列,故,.又,故除以4的余数为,故故答案为:12.设,若存在,使成立的最大正整数为9,则实数的取值...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
高中数学·必修第一册(北师大版)课时作业WORD  章末质量检测(五).doc
高中数学·必修第一册(北师大版)课时作业WORD 章末质量检测(五).doc
免费
15下载
精品解析:上海市崇明区2024届高三二模数学试题(原卷版).docx
精品解析:上海市崇明区2024届高三二模数学试题(原卷版).docx
免费
0下载
2022年高考数学试卷(新高考Ⅱ卷)(解析卷).pdf
2022年高考数学试卷(新高考Ⅱ卷)(解析卷).pdf
免费
0下载
2023《大考卷》二轮专项分层特训卷•数学·文科【统考版】热点问题专练 7.docx
2023《大考卷》二轮专项分层特训卷•数学·文科【统考版】热点问题专练 7.docx
免费
28下载
2024年高考数学一轮复习(新高考版) 第6章 §6.5 数列求和.pptx
2024年高考数学一轮复习(新高考版) 第6章 §6.5 数列求和.pptx
免费
0下载
第04讲+指数与指数函数(八大题型)(课件)-2025年高考数学一轮复习讲练测(新教材新高考).pptx
第04讲+指数与指数函数(八大题型)(课件)-2025年高考数学一轮复习讲练测(新教材新高考).pptx
免费
0下载
2025年新高考数学复习资料第二章 一元二次函数、方程和不等式(综合检测)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)解析版.docx
2025年新高考数学复习资料第二章 一元二次函数、方程和不等式(综合检测)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)解析版.docx
免费
0下载
高中2023《微专题·小练习》·数学·理科·L-3专练7 二次函数与幂函数.docx
高中2023《微专题·小练习》·数学·理科·L-3专练7 二次函数与幂函数.docx
免费
0下载
高中2022·微专题·小练习·数学·理科【统考版】专练37 .docx
高中2022·微专题·小练习·数学·理科【统考版】专练37 .docx
免费
0下载
2024年新高考数学复习资料第四章 导数及其应用(综合检测)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
2024年新高考数学复习资料第四章 导数及其应用(综合检测)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
免费
0下载
2016年高考数学真题( 江苏自主命题).doc
2016年高考数学真题( 江苏自主命题).doc
免费
7下载
2024版《大考卷》全程考评特训卷·数学【新教材】考点练3.docx
2024版《大考卷》全程考评特训卷·数学【新教材】考点练3.docx
免费
27下载
高中2024版《微专题》·数学·新高考专练 1.docx
高中2024版《微专题》·数学·新高考专练 1.docx
免费
0下载
2009年高考数学真题(理科)(安徽自主命题).doc
2009年高考数学真题(理科)(安徽自主命题).doc
免费
5下载
2015年湖南省高考数学试卷(文科).doc
2015年湖南省高考数学试卷(文科).doc
免费
0下载
思想04+运用转化与化归的思想方法解题(4大核心考点)(课件)-2024年高考数学二轮复习讲练测(新教材新高考).pptx
思想04+运用转化与化归的思想方法解题(4大核心考点)(课件)-2024年高考数学二轮复习讲练测(新教材新高考).pptx
免费
0下载
1999年高考数学真题(文科)(湖北自主命题).doc
1999年高考数学真题(文科)(湖北自主命题).doc
免费
9下载
2025年新高考数学复习资料专题14 导数与函数的单调性(九大题型+模拟精练)(解析版).docx
2025年新高考数学复习资料专题14 导数与函数的单调性(九大题型+模拟精练)(解析版).docx
免费
0下载
2019年高考数学试卷(上海)(秋考)(解析卷).doc
2019年高考数学试卷(上海)(秋考)(解析卷).doc
免费
0下载
2008年高考理科数学试题(天津卷)及参考答案.docx
2008年高考理科数学试题(天津卷)及参考答案.docx
免费
17下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群