2024年高考押题预测卷数学(北京卷02)(全解全析).docx本文件免费下载 【共18页】

2024年高考押题预测卷数学(北京卷02)(全解全析).docx
2024年高考押题预测卷数学(北京卷02)(全解全析).docx
2024年高考押题预测卷数学(北京卷02)(全解全析).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com2024年高考押题预测卷02【北京卷】数学·全解全析第一部分(选择题共40分)一、选择题:本题共10小题,每小题4分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。12345678910ADCDBABBDC1.【答案】A【分析】求,判断选项.【详解】根据题意可得,,故选:A2.【答案】D【分析】由,化简得到求解.【详解】解:因为复数满足,所以,所以的虚部为-3,故选:D3.【答案】C【分析】根据题意设出双曲线方程,在根据离心率公式,即可求出。【详解】由题意知,双曲线的焦点在轴上,设双曲线的方程为,因为双曲线C经过点,所以,因为,所以,所以,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以双曲线的标准方程为.故选:C4.【答案】D【分析】根据基本初等函数的单调性与奇偶性判断即可.【详解】对于A:定义域为,为非奇非偶函数,故A错误;对于B:定义域为,为奇函数,但是函数在上单调递减,故B错误;对于C:为奇函数,定义域为,但是函数在上不单调,故C错误;对于D:令定义域为,且,所以为奇函数,且当时,函数在上单调递增,故D正确.故选:D5.【答案】B【分析】利用特殊值法,和对数函数的性质与逻辑关系进行判断选项.【详解】若,由,取,但是,而,则,又,则中至少有一个大于1,若都小于等于1,根据不等式的性质可知,乘积也小于等于1,与乘积大于1矛盾,则,故,所以是的必要而不充分条件.故选:B6.【答案】A【分析】先利用余弦定理求出,再利用面积公式求解.【详解】,解得,则,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以.故选:A.7.【答案】B【分析】将两边平方,即可得到,再由数量积的运算律计算可得.【详解】因为,所以,即,所以,即,所以.故选:B8.【答案】B【分析】根据给定条件,利用等差数列的性质求出,再求出.【详解】等差数列中,由,得,解得,而,所以.故选:B9.【答案】D【分析】由直线方程得到其过定点,而可看成单位圆上的一点,故可将求点到直线之距转化为求圆心到直线之距,要使距离最大,需使直线,此时最大距离即圆心到点的距离再加上半径即得.【详解】由直线整理得,可知直线经过定点,而由知,点可看成圆上的动点,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com于是求点到直线的距离最值可通过求圆心到直线的距离得到.如图知当直线与圆相交时,到直线的距离最小值为,要使点到直线距离最大,需使圆心到直线距离最大,又因直线过定点,故当且仅当时距离最大,(若直线与不垂直,则过点作直线的垂线段长必定比短)此时,故点到直线距离的最大值为,即的最大值与最小值之差为.故选:D.10.【答案】C【分析】由已知可得面,可得上任意一点到平面的距离相等,即可判断(1);点P在直线上运动时,直线与平面所成的角和直线与平面所成的角不相等,即可判断(2);根据线面垂直的判定定理可证得平面,再由线面垂直的性质即可判断(3);由线面垂直的判定定理可证平面,即可判断(4)小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【详解】对于(1),因为,面,面,所以面,所以上任意一点到平面的距离相等,又,所以三棱锥的体积不变,故正确;对于(2),点P在直线上运动时,直线AB与平面所成的角和直线与平面所成的角不相等,故错误;对于(3),设,则,又面,所以,又,所以平面,又平面,所以,所以点P在直线上运动时,直线与直线所成的角的大小不变,故正确;对于(4),因为为正方体,则平面,且平面,则,又,且,平面,所以平面,且平面,所以,又平面,且平面,所以,又,且,平面,所以平面,且平面,所以,小学、初中...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
高中数学·选择性必修·第一册·湘教版课时作业word  课时作业(三十七) 二项式定理(2).docx
高中数学·选择性必修·第一册·湘教版课时作业word 课时作业(三十七) 二项式定理(2).docx
免费
26下载
2019年上海市青浦区高考数学一模试卷(含解析版).doc
2019年上海市青浦区高考数学一模试卷(含解析版).doc
免费
0下载
2024年新高考数学复习资料专题22 计数原理与二项式定理(原卷版).docx
2024年新高考数学复习资料专题22 计数原理与二项式定理(原卷版).docx
免费
0下载
2016年江苏省高考数学试卷.doc
2016年江苏省高考数学试卷.doc
免费
0下载
高中数学高考数学10大专题技巧--专题05 立体几何中的截面问题(学生版).docx.doc
高中数学高考数学10大专题技巧--专题05 立体几何中的截面问题(学生版).docx.doc
免费
0下载
2024届高考数学考向核心卷—新课标版 答案.pdf
2024届高考数学考向核心卷—新课标版 答案.pdf
免费
12下载
2013年高考数学试卷(理)(陕西)(解析卷).doc
2013年高考数学试卷(理)(陕西)(解析卷).doc
免费
0下载
2000年青海高考文科数学真题及答案.doc
2000年青海高考文科数学真题及答案.doc
免费
14下载
精品解析:江苏省张家港市2023-2024学年高三下学期2月阶段性调研测试数学试卷(原卷版).docx
精品解析:江苏省张家港市2023-2024学年高三下学期2月阶段性调研测试数学试卷(原卷版).docx
免费
0下载
2025年新高考数学复习资料专题突破卷14 累加、累乘、构造法求数列通项公式(解析版).docx
2025年新高考数学复习资料专题突破卷14 累加、累乘、构造法求数列通项公式(解析版).docx
免费
0下载
高中数学·必修第一册(湘教版)课时作业(word)  课时作业(四十九) .docx
高中数学·必修第一册(湘教版)课时作业(word) 课时作业(四十九) .docx
免费
30下载
2023年高考数学试卷(新课标Ⅱ卷)(解析卷) (5).docx
2023年高考数学试卷(新课标Ⅱ卷)(解析卷) (5).docx
免费
0下载
2023《微专题·小练习》·数学·理科·L-3专练46 高考大题专练(四) 立体几何的综合运用.docx
2023《微专题·小练习》·数学·理科·L-3专练46 高考大题专练(四) 立体几何的综合运用.docx
免费
13下载
2018年高考数学试卷(上海)(秋考)(空白卷).pdf
2018年高考数学试卷(上海)(秋考)(空白卷).pdf
免费
0下载
高中数学·必修第二册(RJ-A版)课时作业 WORD  详解答案.doc
高中数学·必修第二册(RJ-A版)课时作业 WORD 详解答案.doc
免费
27下载
上海市各区高三数学一模模块汇编解析几何汇编--教师版.docx
上海市各区高三数学一模模块汇编解析几何汇编--教师版.docx
免费
0下载
2024年新高考数学复习资料易错点10  立体几何-备战2022年高考数学考试易错题(新高考专用)(学生版) .docx
2024年新高考数学复习资料易错点10 立体几何-备战2022年高考数学考试易错题(新高考专用)(学生版) .docx
免费
0下载
2012年上海市杨浦区高考数学一模试卷(理科).doc
2012年上海市杨浦区高考数学一模试卷(理科).doc
免费
0下载
高中数学·必修第四册·RJ-B课时作业(word)  课时作业 4.docx
高中数学·必修第四册·RJ-B课时作业(word) 课时作业 4.docx
免费
10下载
2015年上海市杨浦区高考数学二模试卷(文科).doc
2015年上海市杨浦区高考数学二模试卷(文科).doc
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群