2024年高考生物一轮复习讲义(新人教版)第三课时 构造函数证明不等式.doc本文件免费下载 【共10页】

2024年高考生物一轮复习讲义(新人教版)第三课时 构造函数证明不等式.doc
2024年高考生物一轮复习讲义(新人教版)第三课时 构造函数证明不等式.doc
2024年高考生物一轮复习讲义(新人教版)第三课时 构造函数证明不等式.doc
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com第三课时构造函数证明不等式题型一移项构造函数证明不等式例1已知函数f(x)=ex-3x+3a(e为自然对数的底数,a∈R).(1)求f(x)的单调区间与极值;(2)求证:当a>ln,且x>0时,>x+-3a.(1)解由f(x)=ex-3x+3a,x∈R,知f′(x)=ex-3,x∈R.令f′(x)=0,得x=ln3,于是当x变化时,f′(x),f(x)的变化情况如下表:x(-∞,ln3)ln3(ln3,+∞)f′(x)-0+f(x)极小值故f(x)的单调递减区间是(-∞,ln3),单调递增区间是(ln3,+∞),f(x)在x=ln3处取得极小值,极小值为f(ln3)=eln3-3ln3+3a=3(1-ln3+a),无极大值.(2)证明待证不等式等价于ex>x2-3ax+1,设g(x)=ex-x2+3ax-1,x>0,于是g′(x)=ex-3x+3a,x>0.由(1)及a>ln=ln3-1知g′(x)的最小值为g′(ln3)=3(1-ln3+a)>0.于是对任意x>0,都有g′(x)>0,所以g(x)在(0,+∞)内单调递增.于是当a>ln=ln3-1时,对任意x∈(0,+∞),都有g(x)>g(0).而g(0)=0,从而对任意x∈(0,+∞),g(x)>0.即ex>x2-3ax+1,故>x+-3a.感悟提升待证不等式的两边含有同一个变量时,一般地,可以直接构造“左减右”或“右减左”的函数,利用导数研究其单调性等相关函数性质证明不等小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com式.训练1证明:当x>1时,x2+lnx<x3.证明设g(x)=x3-x2-lnx,则g′(x)=2x2-x-,因为当x>1时,g′(x)=>0,所以g(x)在(1,+∞)上是增函数,所以当x>1时,g(x)>g(1)=>0,所以当x>1时,x2+lnx<x3.题型二分拆函数法证明不等式例2证明:对一切x∈(0,+∞),都有lnx>-成立.证明问题等价于证明xlnx>-(x∈(0,+∞)).设f(x)=xlnx,f′(x)=1+lnx,易知x=为f(x)的唯一极小值点,则f(x)=xlnx(x∈(0,+∞))的最小值是-,当且仅当x=时取到.设m(x)=-(x∈(0,+∞)),则m′(x)=,由m′(x)<0,得x>1时,m(x)单调递减;由m′(x)>0得0<x<1时,m(x)单调递增,易知m(x)max=m(1)=-,当且仅当x=1时取到.从而对一切x∈(0,+∞),xlnx≥-≥-,两个等号不同时取到,所以对一切x∈(0,+∞)都有lnx>-成立.感悟提升1.若直接求导后导数式比较复杂或无从下手时,可将待证式进行变形,构造两个函数,从而找到可以传递的中间量,达到证明的目标.在证明过程中,等价转化是关键,此处g(x)min≥f(x)max恒成立,从而f(x)≤g(x)恒成立.2.等价变形的目的是求导后简单地找到极值点,一般地,ex与lnx要分离,常构造xn与lnx,xn与ex的积、商形式.便于求导后找到极值点.训练2(2022·百校大联考)已知函数f(x)=elnx-ax(x∈R).(1)讨论函数f(x)的单调性;(2)当a=e时,证明:xf(x)-ex+2ex≤0.(1)解f′(x)=-a(x>0),①若a≤0,则f′(x)>0,f(x)在(0,+∞)上单调递增;②若a>0,则当0<x<时,f′(x)>0;当x>时,f′(x)<0,∴f(x)在上单调递增,在上单调递减.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com综上,当a≤0时,f(x)在(0,+∞)上单调递增;当a>0时,f(x)在上单调递增,在上单调递减.(2)证明法一 x>0,∴只需证f(x)≤-2e,当a=e时,由(1)知,f(x)在(0,1)上单调递增,在(1,+∞)上单调递减,∴f(x)max=f(1)=-e.记g(x)=-2e(x>0),则g′(x)=,∴当0<x<1时,g′(x)<0,当x>1时,g′(x)>0,故g(x)在(0,1)上单调递减;在(1,+∞)上单调递增,∴g(x)min=g(1)=-e.综上,当x>0时,f(x)≤g(x),即f(x)≤-2e,即xf(x)-ex+2ex≤0.法二由题意知,即证exlnx-ex2-ex+2ex≤0,从而等价于lnx-x+2≤.设函数g(x)=lnx-x+2,则g′(x)=-1.∴当x∈(0,1)时,g′(x)>0,当x∈(1,+∞)时,g′(x)<0,故g(x)在(0,1)上单调递增,在(1,+∞)上单调递减,从而g(x)在(0,+∞)上的最大值为g(1)=1.设函数h(x)=,则h′(x)=.∴当x∈(0,1)时,h′(x)<0,当x∈(1,+∞)时,h′(x)>0...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2023年高考生物真题(湖南自主命题)(原卷版).docx
2023年高考生物真题(湖南自主命题)(原卷版).docx
免费
14下载
2013年高考生物真题(新课标Ⅰ)(解析版).doc
2013年高考生物真题(新课标Ⅰ)(解析版).doc
免费
11下载
2019年高考生物试卷(新课标Ⅱ)(空白卷) (9).docx
2019年高考生物试卷(新课标Ⅱ)(空白卷) (9).docx
免费
0下载
高考生物急救知识手册(2).pdf
高考生物急救知识手册(2).pdf
免费
10下载
【高考生物】备战2024年易错点15  生态系统中的几个“不一定”(原卷版) .docx
【高考生物】备战2024年易错点15 生态系统中的几个“不一定”(原卷版) .docx
免费
0下载
2019年高考真题 生物(山东卷)(含解析版).pdf
2019年高考真题 生物(山东卷)(含解析版).pdf
免费
21下载
精品解析:2022届上海市奉贤区高二二模生物试题(解析版).docx
精品解析:2022届上海市奉贤区高二二模生物试题(解析版).docx
免费
0下载
高考生物复习  第八单元 第46课时 植物生长调节剂的应用及环境因素参与调节植物的生命活动.docx
高考生物复习 第八单元 第46课时 植物生长调节剂的应用及环境因素参与调节植物的生命活动.docx
免费
0下载
2024年高考生物一轮复习讲义(新人教版)第9章 §9.4 列联表与独立性检验.docx
2024年高考生物一轮复习讲义(新人教版)第9章 §9.4 列联表与独立性检验.docx
免费
19下载
高考生物复习  第二单元 第8课时 细胞器之间的协调配合.docx
高考生物复习 第二单元 第8课时 细胞器之间的协调配合.docx
免费
0下载
2024年新高考生物资料  第05讲 细胞的增殖与受精作用(讲义)解析版.docx
2024年新高考生物资料 第05讲 细胞的增殖与受精作用(讲义)解析版.docx
免费
0下载
2019年全国统一高考生物试卷(新课标ⅰ)(含解析版).doc
2019年全国统一高考生物试卷(新课标ⅰ)(含解析版).doc
免费
19下载
【高考生物】备战2024年易错点17  生物工程的“四个”不相等(解析版) .docx
【高考生物】备战2024年易错点17 生物工程的“四个”不相等(解析版) .docx
免费
0下载
2014年福建省高考生物试卷往年高考真题.doc
2014年福建省高考生物试卷往年高考真题.doc
免费
0下载
2021年全国统一高考生物试卷(全国甲卷)(原卷版).doc
2021年全国统一高考生物试卷(全国甲卷)(原卷版).doc
免费
17下载
高考生物复习  (14)生物的进化——2025届高考生物二轮复习易错重难提升学案(含解析).docx
高考生物复习 (14)生物的进化——2025届高考生物二轮复习易错重难提升学案(含解析).docx
免费
0下载
卷1-备战2022年高考生物【名校地市好题必刷】全真模拟卷(山东专用)·第一辑(原卷版).docx
卷1-备战2022年高考生物【名校地市好题必刷】全真模拟卷(山东专用)·第一辑(原卷版).docx
免费
12下载
2014年四川省高考生物试卷往年高考真题.doc
2014年四川省高考生物试卷往年高考真题.doc
免费
0下载
高中2023《微专题·小练习》·生物·新教材·XL-7专练12 被动运输.docx
高中2023《微专题·小练习》·生物·新教材·XL-7专练12 被动运输.docx
免费
0下载
2017年高考生物试卷(新课标Ⅱ)(空白卷) (9).docx
2017年高考生物试卷(新课标Ⅱ)(空白卷) (9).docx
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

相关文档

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群
提交所需资料详情,我们来帮找资料