2020年上海高考数学真题试卷(word解析版).docx本文件免费下载 【共19页】

2020年上海高考数学真题试卷(word解析版).docx
2020年上海高考数学真题试卷(word解析版).docx
2020年上海高考数学真题试卷(word解析版).docx
2020年全国高考数学真题试卷及解析(上海卷)一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)1.已知集合,2,,集合,4,,则.2.计算:.3.已知复数为虚数单位),则.4.已知函数,是的反函数,则.5.已知、满足,则的最大值为.6.已知行列式,则.7.已知有四个数1,2,,,这四个数的中位数是3,平均数是4,则.8.已知数列是公差不为零的等差数列,且,则.9.从6个人挑选4个人去值班,每人值班一天,第一天安排1个人,第二天安排1个人,第三天安排2个人,则共有种安排情况.10.已知椭圆的右焦点为,直线经过椭圆右焦点,交椭圆于、两点(点在第二象限),若点关于轴对称点为,且满足,求直线的方程是.11.设,若存在定义域为的函数同时满足下列两个条件:(1)对任意的,的值为或;(2)关于的方程无实数解,则的取值范围是.12.已知,,,,,是平面内两两互不相等的向量,满足,且,(其中,2,,2,,,则的最大值是.二、选择题(本大题共4题,每题5分,共20分)13.下列等式恒成立的是A.B.C.D.14.已知直线方程的一个参数方程可以是A.为参数)B.为参数)C.为参数)D.为参数)15.在棱长为10的正方体中,为左侧面上一点,已知点到的距离为3,到的距离为2,则过点且与平行的直线相交的面是A.B.C.D.16.命题:存在且,对于任意的,使得(a);命题单调递减且恒成立;命题单调递增,存在使得,则下列说法正确的是A.只有是的充分条件B.只有是的充分条件C.,都是的充分条件D.,都不是的充分条件三、解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)已知是边长为1的正方形,正方形绕旋转形成一个圆柱.(1)求该圆柱的表面积;(2)正方形绕逆时针旋转至,求线段与平面所成的角.18.(14分)已知函数,.(1)的周期是,求,并求的解集;(2)已知,,,,求的值域.19.(14分)在研究某市场交通情况时,道路密度是指该路段上一定时间内通过的车辆数除以时间,车辆密度是该路段一定时间内通过的车辆数除以该路段的长度,现定义交通流量为,为道路密度,为车辆密度..(1)若交通流量,求道路密度的取值范围;(2)已知道路密度,交通流量,求车辆密度的最大值.20.(16分)已知双曲线与圆交于点,(第一象限),曲线为、上取满足的部分.(1)若,求的值;(2)当,与轴交点记作点、,是曲线上一点,且在第一象限,且,求;(3)过点斜率为的直线与曲线只有两个交点,记为、,用表示,并求的取值范围.21.(18分)已知数列为有限数列,满足,则称满足性质.(1)判断数列3、2、5、1和4、3、2、5、1是否具有性质,请说明理由;(2)若,公比为的等比数列,项数为10,具有性质,求的取值范围;(3)若是1,2,3,,的一个排列,符合,2,,,、都具有性质,求所有满足条件的数列.参考答案1.,【解析】因为,2,,,4,,则,.故答案为:,.2.【解析】,故答案为:.3.【解析】由,得.故答案为:.4.【解析】由,得,把与互换,可得的反函数为.故答案为:.5.-1【解析】由约束条件作出可行域如图阴影部分,化目标函数为,由图可知,当直线过时,直线在轴上的截距最大,联立,解得,即.有最大值为.故答案为:.6.2【解析】行列式,可得,解得.故答案为:2.7.36【解析】因为四个数的平均数为4,所以,因为中位数是3,所以,解得,代入上式得,所以,故答案为:36.8.【解析】根据题意,等差数列满足,即,变形可得,所以.故答案为:.9.180【解析】根据题意,可得排法共有种.故答案为:180.10.【解析】椭圆的右焦点为,直线经过椭圆右焦点,交椭圆于、两点(点在第二象限),若点关于轴对称点为,且满足,可知直线的斜率为,所以直线的方程是:,即.故答案为:.11.,,,【解析】根据条件(1)可得或(1),又因为关于的方程无实数解,所以或1,故,,,,故答案为:,,,.12.6【解析】如图,设,,由,且,,分别以,为圆心,以1和2为半径画圆,其中任意两圆的公共点共有6个.故满足条件的的最大值为6.故答案为:6.13.B【解析】.显然当,时,不等式不成立,故错误;.,,,故...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
高中数学·必修第一册(北师大版)课时作业WORD  章末质量检测(五).doc
高中数学·必修第一册(北师大版)课时作业WORD 章末质量检测(五).doc
免费
15下载
精品解析:上海市崇明区2024届高三二模数学试题(原卷版).docx
精品解析:上海市崇明区2024届高三二模数学试题(原卷版).docx
免费
0下载
2022年高考数学试卷(新高考Ⅱ卷)(解析卷).pdf
2022年高考数学试卷(新高考Ⅱ卷)(解析卷).pdf
免费
0下载
2023《大考卷》二轮专项分层特训卷•数学·文科【统考版】热点问题专练 7.docx
2023《大考卷》二轮专项分层特训卷•数学·文科【统考版】热点问题专练 7.docx
免费
28下载
2024年高考数学一轮复习(新高考版) 第6章 §6.5 数列求和.pptx
2024年高考数学一轮复习(新高考版) 第6章 §6.5 数列求和.pptx
免费
0下载
第04讲+指数与指数函数(八大题型)(课件)-2025年高考数学一轮复习讲练测(新教材新高考).pptx
第04讲+指数与指数函数(八大题型)(课件)-2025年高考数学一轮复习讲练测(新教材新高考).pptx
免费
0下载
2025年新高考数学复习资料第二章 一元二次函数、方程和不等式(综合检测)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)解析版.docx
2025年新高考数学复习资料第二章 一元二次函数、方程和不等式(综合检测)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)解析版.docx
免费
0下载
高中2023《微专题·小练习》·数学·理科·L-3专练7 二次函数与幂函数.docx
高中2023《微专题·小练习》·数学·理科·L-3专练7 二次函数与幂函数.docx
免费
0下载
高中2022·微专题·小练习·数学·理科【统考版】专练37 .docx
高中2022·微专题·小练习·数学·理科【统考版】专练37 .docx
免费
0下载
2024年新高考数学复习资料第四章 导数及其应用(综合检测)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
2024年新高考数学复习资料第四章 导数及其应用(综合检测)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
免费
0下载
2016年高考数学真题( 江苏自主命题).doc
2016年高考数学真题( 江苏自主命题).doc
免费
7下载
2024版《大考卷》全程考评特训卷·数学【新教材】考点练3.docx
2024版《大考卷》全程考评特训卷·数学【新教材】考点练3.docx
免费
27下载
高中2024版《微专题》·数学·新高考专练 1.docx
高中2024版《微专题》·数学·新高考专练 1.docx
免费
0下载
2009年高考数学真题(理科)(安徽自主命题).doc
2009年高考数学真题(理科)(安徽自主命题).doc
免费
5下载
2015年湖南省高考数学试卷(文科).doc
2015年湖南省高考数学试卷(文科).doc
免费
0下载
思想04+运用转化与化归的思想方法解题(4大核心考点)(课件)-2024年高考数学二轮复习讲练测(新教材新高考).pptx
思想04+运用转化与化归的思想方法解题(4大核心考点)(课件)-2024年高考数学二轮复习讲练测(新教材新高考).pptx
免费
0下载
1999年高考数学真题(文科)(湖北自主命题).doc
1999年高考数学真题(文科)(湖北自主命题).doc
免费
9下载
2025年新高考数学复习资料专题14 导数与函数的单调性(九大题型+模拟精练)(解析版).docx
2025年新高考数学复习资料专题14 导数与函数的单调性(九大题型+模拟精练)(解析版).docx
免费
0下载
2019年高考数学试卷(上海)(秋考)(解析卷).doc
2019年高考数学试卷(上海)(秋考)(解析卷).doc
免费
0下载
2008年高考理科数学试题(天津卷)及参考答案.docx
2008年高考理科数学试题(天津卷)及参考答案.docx
免费
17下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群