2023年高考数学真题(北京自主命题)(解析版).doc本文件免费下载 【共29页】

2023年高考数学真题(北京自主命题)(解析版).doc
2023年高考数学真题(北京自主命题)(解析版).doc
2023年高考数学真题(北京自主命题)(解析版).doc
2023年普通高等学校招生全国统一考试(北京卷)数学本试卷满分150分.考试时间120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合,则()A.B.C.D.【答案】A【解析】【分析】先化简集合,然后根据交集的定义计算.【详解】由题意,,,根据交集的运算可知,.故选:A2.在复平面内,复数对应的点的坐标是,则的共轭复数()A.B.C.D.【答案】D【解析】【分析】根据复数的几何意义先求出复数,然后利用共轭复数的定义计算.【详解】在复平面对应的点是,根据复数的几何意义,,由共轭复数的定义可知,.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com故选:D3.已知向量满足,则()A.B.C.0D.1【答案】B【解析】【分析】利用平面向量数量积的运算律,数量积的坐标表示求解作答.【详解】向量满足,所以.故选:B4.下列函数中,在区间上单调递增的是()A.B.C.D.【答案】C【解析】【分析】利用基本初等函数的单调性,结合复合函数的单调性判断ABC,举反例排除D即可.【详解】对于A,因为在上单调递增,在上单调递减,所以在上单调递减,故A错误;对于B,因为在上单调递增,在上单调递减,所以在上单调递减,故B错误;对于C,因为在上单调递减,在上单调递减,所以在上单调递增,故C正确;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com对于D,因为,,显然在上不单调,D错误.故选:C.5.的展开式中的系数为().A.B.C.40D.80【答案】D【解析】【分析】写出的展开式的通项即可【详解】的展开式的通项为令得所以的展开式中的系数为故选:D【点睛】本题考查的是二项式展开式通项的运用,较简单.6.已知抛物线的焦点为,点在上.若到直线的距离为5,则()A.7B.6C.5D.4【答案】D【解析】【分析】利用抛物线的定义求解即可.【详解】因为抛物线的焦点,准线方程为,点在上,所以到准线的距离为,又到直线的距离为,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以,故.故选:D.7.在中,,则()A.B.C.D.【答案】B【解析】【分析】利用正弦定理的边角变换与余弦定理即可得解.【详解】因为,所以由正弦定理得,即,则,故,又,所以.故选:B.8.若,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】C【解析】【分析】解法一:由化简得到即可判断;解法二:证明充分性可由得到,代入化简即可,证明必要性可由去分母,再用完全平方公式即可;解法三:小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com证明充分性可由通分后用配凑法得到完全平方公式,再把代入即可,证明必要性可由通分后用配凑法得到完全平方公式,再把代入,解方程即可.【详解】解法一:因为,且,所以,即,即,所以.所以“”是“”的充要条件.解法二:充分性:因为,且,所以,所以,所以充分性成立;必要性:因为,且,所以,即,即,所以.所以必要性成立.所以“”是“”的充要条件.解法三:充分性:因为,且,所以,所以充分性成立;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com必要性:因为,且,所以,所以,所以,所以,所以必要性成立.所以“”是“”的充要条件.故选:C9.坡屋顶是我国传统建筑造型之一,蕴含着丰富的数学元素.安装灯带可以勾勒出建筑轮廓,展现造型之美.如图,某坡屋顶可视为一个五面体,其中两个面是全等的等腰梯形,两个面是全等的等腰三角形.若,且等腰梯形所在的平面、等腰三角形所在的平面与平面的夹角的正切值均为,则该五面体的所有棱长之和为()A.B.C.D.【答案】C【解析】【分析】先根据线面角的定义求得,从而依次求,,,,再把所有棱长相加即可得解.【详解】如图,过做平面,垂足为,过分别做,,垂足分别小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com为,,连接,由题意得等腰梯形所在的面、等腰三角形所在的面与底面...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
1992年陕西高考文科数学真题及答案.doc
1992年陕西高考文科数学真题及答案.doc
免费
1下载
高中2023《微专题·小练习》·数学·理科·L-3专练63 离散型随机变量及其分布列.docx
高中2023《微专题·小练习》·数学·理科·L-3专练63 离散型随机变量及其分布列.docx
免费
0下载
高中数学(必修第二册)(BSD版)课时作业(word)  课时作业19.doc
高中数学(必修第二册)(BSD版)课时作业(word) 课时作业19.doc
免费
2下载
2025届高中数学一轮复习课件:第七章 第3讲等比数列(共65张ppt).pptx
2025届高中数学一轮复习课件:第七章 第3讲等比数列(共65张ppt).pptx
免费
0下载
2024年上海高考数学真题(解析版).docx
2024年上海高考数学真题(解析版).docx
免费
0下载
高中数学·选择性必修·第一册·(RJ-A版)课时作业WORD  课时作业(十九).docx
高中数学·选择性必修·第一册·(RJ-A版)课时作业WORD 课时作业(十九).docx
免费
15下载
2024版《大考卷》全程考评特训卷·数学·理科【统考版】点点练 25.docx
2024版《大考卷》全程考评特训卷·数学·理科【统考版】点点练 25.docx
免费
9下载
2024版《大考卷》全程考评特训卷·数学【新教材】考点过关检测10.docx
2024版《大考卷》全程考评特训卷·数学【新教材】考点过关检测10.docx
免费
3下载
2025年新高考数学复习资料2025届高中数学一轮复习讲义:第八章 第4讲 直线、平面垂直的判定及性质(含解析).docx
2025年新高考数学复习资料2025届高中数学一轮复习讲义:第八章 第4讲 直线、平面垂直的判定及性质(含解析).docx
免费
0下载
高中2024版考评特训卷·数学【新教材】考点练55.docx
高中2024版考评特训卷·数学【新教材】考点练55.docx
免费
0下载
2023年高考数学试卷(理)(全国甲卷)(空白卷) (4).docx
2023年高考数学试卷(理)(全国甲卷)(空白卷) (4).docx
免费
0下载
2013年安徽省高考数学试卷(文科).doc
2013年安徽省高考数学试卷(文科).doc
免费
0下载
2023年上海市春季高考数学真题试卷含详解.docx
2023年上海市春季高考数学真题试卷含详解.docx
免费
11下载
2017年上海市静安区高考数学一模试卷.doc
2017年上海市静安区高考数学一模试卷.doc
免费
0下载
2024版《大考卷》全程考评特训卷·数学【新教材】考点练30.docx
2024版《大考卷》全程考评特训卷·数学【新教材】考点练30.docx
免费
22下载
第03讲+直线、平面平行的判定与性质(八大题型)(课件)-2025年高考数学一轮复习讲练测(新教材新高考).pptx
第03讲+直线、平面平行的判定与性质(八大题型)(课件)-2025年高考数学一轮复习讲练测(新教材新高考).pptx
免费
0下载
2024年新高考数学复习资料【专项精练】第01课 集合-2024年新高考数学分层专项精练(解析版).docx
2024年新高考数学复习资料【专项精练】第01课 集合-2024年新高考数学分层专项精练(解析版).docx
免费
0下载
高中数学·必修第一册(RJ-A版)课时作业WORD  课时作业 58.docx
高中数学·必修第一册(RJ-A版)课时作业WORD 课时作业 58.docx
免费
10下载
2018年湖南高考文科数学试题及答案word版.docx
2018年湖南高考文科数学试题及答案word版.docx
免费
6下载
专题09基本初等函数第五缉(解析版)-备战2022年高中数学联赛之历年真题分类汇编(2015-2021).docx
专题09基本初等函数第五缉(解析版)-备战2022年高中数学联赛之历年真题分类汇编(2015-2021).docx
免费
20下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群