小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com上海市预初开学分班考专项复习03列方程解应用题【知识梳理】1.综合复习小学所学的多种类型的应用题解法;2.训练列方程解应用题的熟练程度,提高速度和准确度.3.主要复习、拓展小学阶段“行程问题”的解决方法;4.尝试用方程解决其他新类型的应用题;5.强化列方程解应用题的思想.案例1:小王原来的钱数是小李的3倍,他们各自买了80元的书之后,小王的钱数变成了小李的5倍,请问小王和小李原来各有多少钱?教法说明:有些应用题会出现前后变化的情况,例如“小王给小李5元,他们的钱就一样多了”之类的条件,遇上这种情况,一定要分清“变化前”和“变化后”这两个时间点的不同,虽然是同一人,不同时间他有的钱数是不同的,也要分清倍数关系所对应的时间。理清关系,这个问题涉及了四个数量关系:“小王原来的钱”,“小王之后的钱”,“小李原来的钱”,“小李之后的钱”。它们之间的关系如下图所示:利用这个关系图,可以比较方便地列出方程并求解。参考答案:设小李原来的钱为x元,3x-80=5(x-80)x=1603x=480答:小王和小李原来各有160元和480元。总结:列方程解应用题的一般步骤:1.审题,迅速理解题意。2.思考,找到题中的数量关系。3.设x,将“1倍量”或“较小量”设为x,用x表示其他数量。4.列式,根据等量关系列出方程。5.求解,解方程、计算得到最终结果并作答。案例2.一般来说,行程问题会牵涉到“速度”、“时间”、“路程”这三个数量,关键的数量关系为:×=5倍3倍-80-80小李现在的钱小李原来的钱小王现在的钱小王原来的钱小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com速度×时间=路程2.这个公式又可以演变为:“速度和×时间=”、“速度差×时间=”路程和,路程差3.相遇问题:相向而行同时出发到相遇时甲、乙两人所用的时间相等。基本公式:速度和×相遇时间=相遇路程4.追击问题:同向而行同时出发到相遇(即追击)时,甲、乙两人所用的时间相等。基本公式:速度差×追击时间=追击路程这部分如果学校进度慢,学生没有理解可以举一些例子,通过画图让学生理解基本公式的含义本讲重点复习应用题中最难的一类——行程问题,并且在课内的基础上进行拓展。同时,也提供了一些没有见过的应用题类型让同学们进行挑战,掌握用方程解应用题的关键。在解决行程问题时,往往通过“甲路程+乙路程=总路程”或是“甲路程-乙路程=总路程”这类等量关系来解决问题。要找到这样路程间的关系,辅助的路程线段图就十分重要。除此之外,“甲路程”“乙路程”则更多是通过“甲路程=甲速度×甲时间”这样的关系来得到。分析清楚从开始到结果的整个过程,是解决行程问题的关键所在。在分析行程问题时,还要注意“甲”“乙”的速度、时间之间的关系,往往设出其中一个后,其他都与其相关,能够写清。所以在设未知数时,往往是设某个人的“时间”或者“速度”作为x,较少会出现设路程为x的情况。这部分关于行程问题的分析可以强调下,但学生可能感觉不大。在后面对例题的讲解是可以反过来进行强化。除此之外,还有许多不属于之前学过的类型的应用题,同样可以用方程来解决。“找到关键量设x”、“用带x的式子表示其他量”、“找到等量关系列方程”的顺序来解决即可。当然,这对于同学们来说会是一个挑战。【考点剖析】例题1:有甲、乙、丙三所小学的同学来参加幼苗杯数学邀请赛,其中甲校参赛人数比乙校多5人,比丙校多7人.如果乙、丙两校一共有40人参加比赛,那么三所学校各有多少人参加比赛?例题2:养鸡场有东、西两院,西院鸡的只数是东院的3倍.一天有10只鸡从西院跑到东院,这时西院鸡小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com的数量是东院的2倍,那么现在东、西两个院子各有多少只鸡?例题3:学校安排学生到会议室听报告.如果每3人坐一条长椅,就会剩下16人没有座位;如果每5人坐一条长椅,就会空出1条长椅,还有一条长椅上只坐了2个人.一共有多少个学生去听报告?例题4:青蛙和天鹅一块玩游戏,青蛙比天鹅...