2025年新高考数学复习资料2025年高考数学一轮专题复习--空间向量和立体几何专题七(含解析).doc本文件免费下载 【共21页】

2025年新高考数学复习资料2025年高考数学一轮专题复习--空间向量和立体几何专题七(含解析).doc
2025年新高考数学复习资料2025年高考数学一轮专题复习--空间向量和立体几何专题七(含解析).doc
2025年新高考数学复习资料2025年高考数学一轮专题复习--空间向量和立体几何专题七(含解析).doc
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com空间向量和立体几何高考复习专题七知识点一锥体体积的有关计算,证明线面垂直,已知面面角求其他量典例1、如图所示,圆锥的高,底面圆的半径为,延长直径到点,使得,分别过点、作底面圆的切线,两切线相交于点,点是切线与圆的切点.(1)证明:平面;(2)若平面与平面所成锐二面角的余弦值为,求该圆锥的体积.随堂练习:已知平面四边形,,(如图1所示),现将沿边折起,使得平面平面,点为线段的中点,为线段上一点,(如图2所示).(1)求证:平面;(2)若二面角的余弦值为,求三棱锥的体积.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com典例2、如图,在三棱柱中,平面,四边形为菱形.(1)证明:平面;(2)若,,二面角的余弦值为,求三棱锥的体积.随堂练习:如图所示,在三棱锥中,,为的中点.(1)证明:平面;(2)若点在棱上,且二面角为,求三棱锥的体积.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com典例3、如图,在四棱锥中,平面,底面为矩形,,G为的重心,M为线段的中点,与交于点F.(1)当时,证明:平面;(2)当平面与平面所成锐二面角为时,求三棱锥的体积.随堂练习:如图,在四棱锥中,底面为矩形,侧面是正三角形,侧面底面,M是的中点.(1)证明:平面;(2)若,且二面角的大小为30°,求四棱锥的体积.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com知识点二证明线面垂直,面面角的向量求法典例4、如图,在四棱锥中,底面是矩形且,M为的中点,,.(1)证明:平面;(2)若,与平面所成的角为45°,求二面角的正弦值.随堂练习:如图,四边形是正方形,平面,,,.(1)求证:平面;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(2)求平面与平面夹角的余弦值.典例5、已知四棱锥中,底面,平面平面,,.(1)求证:平面;(2)若,求二面角的余弦值.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com随堂练习:如图,在四棱锥中,底面为正方形,侧面为等边三角形且垂直于底面,分别为的中点.(1)证明:平面;(2)求二面角的正弦值.典例6、如图,已知等边中,E,F分别为AB,AC边的中点,N为BC边上一点,且,将沿EF折到的位置,使平面平面,M为EF中点.(1)求证:平面平面;(2)求二面角的余弦值.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com随堂练习:如图,等腰梯形中,,,现以为折痕把折起,使点到达点的位置,且.1、证明:平面;2、若为上一点,且三棱锥的体积是三棱锥体积的2倍,求平面与平面夹角的余弦值.【正确答案】1、证明见解析2、空间向量和立体几何高考复习专题七答案典例1、答案:(1)证明见解析;(2).解:(1)由题设,底面圆,又是切线与圆的切点,∴底面圆,则,且,而,∴平面.(2)由题设,若,可构建为原点,、、为x、y、z轴的空间直角坐标系,又,可得,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com∴,,,有,,若是面的一个法向量,则,令,则,又面的一个法向量为,∴,可得,∴该圆锥的体积.随堂练习:答案:(1)证明见解析(2)解:(1)证明:因为,所以为等边三角形,因为为的中点,所以.因为平面平面,平面平面平面,所以平面,又平面,所以,又因为平面,所以平面.(2)如图所示以为坐标原点,分别以为轴的正方向建立空间直角坐标系,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com则,,,,.所以,,设,则,设平面的一个法向量为,则,即,取,有,即.平面的一个法向量.设二面角的平面角为,则,解得,即为中点.此时,又因为,所以.典例2、答案:(1)证明见解析;(2).小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com解:(1)因为四边形为菱形,所以.因为平面,平面,所以.又因为,平面,平面,所以平面.(2)以B为坐标原点,分别以,BC所在的...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2024年新高考数学复习资料专题5  空间向量与立体几何(原卷版)-.docx
2024年新高考数学复习资料专题5 空间向量与立体几何(原卷版)-.docx
免费
0下载
2025年新高考数学复习资料专题08 数列求和(奇偶项讨论求和)(典型题型归类训练)(原卷版).docx
2025年新高考数学复习资料专题08 数列求和(奇偶项讨论求和)(典型题型归类训练)(原卷版).docx
免费
0下载
2011年高考数学试卷(理)(四川)(空白卷).pdf
2011年高考数学试卷(理)(四川)(空白卷).pdf
免费
0下载
高中2022·微专题·小练习·数学·理科【统考版】专练28.docx
高中2022·微专题·小练习·数学·理科【统考版】专练28.docx
免费
0下载
2025年新高考数学复习资料专题03 等式性质与不等式性质(思维导图+知识清单+核心素养分析+方法归纳).docx
2025年新高考数学复习资料专题03 等式性质与不等式性质(思维导图+知识清单+核心素养分析+方法归纳).docx
免费
0下载
2023年高考数学试卷(天津)(空白卷).docx
2023年高考数学试卷(天津)(空白卷).docx
免费
0下载
2016年四川省高考数学试卷(理科).doc
2016年四川省高考数学试卷(理科).doc
免费
1下载
高中数学状元笔记 08圆锥曲线解题方法.Removed-Output(1).pdf
高中数学状元笔记 08圆锥曲线解题方法.Removed-Output(1).pdf
免费
9下载
精品解析:上海市静安区2024届高三下学期期中教学质量调研数学试卷(原卷版).docx
精品解析:上海市静安区2024届高三下学期期中教学质量调研数学试卷(原卷版).docx
免费
0下载
2005年青海高考理科数学真题及答案.doc
2005年青海高考理科数学真题及答案.doc
免费
2下载
2022年高考数学试卷(文)(全国乙卷)(空白卷) (12).docx
2022年高考数学试卷(文)(全国乙卷)(空白卷) (12).docx
免费
0下载
2024年高考数学一轮复习(新高考版) 第6章 §6.4 数列中的构造问题[培优课].pptx
2024年高考数学一轮复习(新高考版) 第6章 §6.4 数列中的构造问题[培优课].pptx
免费
0下载
2024年新高考数学复习资料专题01 集合与常用逻辑用语-(原卷版).docx
2024年新高考数学复习资料专题01 集合与常用逻辑用语-(原卷版).docx
免费
0下载
高中数学·选择性必修·第三册·(RJ-B版)课时作业(word)  课时作业(四).docx
高中数学·选择性必修·第三册·(RJ-B版)课时作业(word) 课时作业(四).docx
免费
19下载
2024年新高考数学复习资料大题培优04立体几何归类( 7大题型)(解析版).docx
2024年新高考数学复习资料大题培优04立体几何归类( 7大题型)(解析版).docx
免费
0下载
2023年高考全国乙卷数学(理)真题(原卷版)word版.docx
2023年高考全国乙卷数学(理)真题(原卷版)word版.docx
免费
19下载
2012年高考数学试卷(文)(上海)(空白卷).doc
2012年高考数学试卷(文)(上海)(空白卷).doc
免费
0下载
高中2022·微专题·小练习·数学·理科【统考版】专练41.docx
高中2022·微专题·小练习·数学·理科【统考版】专练41.docx
免费
0下载
2022年高考数学试卷(文)(全国乙卷)(解析卷) (13).docx
2022年高考数学试卷(文)(全国乙卷)(解析卷) (13).docx
免费
0下载
2021年高考数学试卷(新高考Ⅰ卷)(空白卷) (4).pdf
2021年高考数学试卷(新高考Ⅰ卷)(空白卷) (4).pdf
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群
提交所需资料详情,我们来帮找资料