2024年新高考数学复习资料重难点5-2 数列前n项和的求法(8题型+满分技巧+限时检测)(解析版).docx本文件免费下载 【共38页】

2024年新高考数学复习资料重难点5-2 数列前n项和的求法(8题型+满分技巧+限时检测)(解析版).docx
2024年新高考数学复习资料重难点5-2 数列前n项和的求法(8题型+满分技巧+限时检测)(解析版).docx
2024年新高考数学复习资料重难点5-2 数列前n项和的求法(8题型+满分技巧+限时检测)(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com重难点5-2数列前n项和的求法数列求和是高考数学的必考内容,一般利用等差数列的通项来构建考查裂项求和,构建等差等比数列考查错位相减法求和,解答题中等差数列、等比数列通项的考查往往是第1问,数列求和则是第2问。近几年在数列求和中加大了思维能力的考查,减少了对程序化计算(错位相减、裂项相消)的考查,主要基于新的情景,要求考生通过归纳或挖掘数列各项间关系发现规律再进行求和。【题型1公式法求数列前n项和】满分技巧(1)等差数列的前n项和,推导方法:倒序相加法.(2)等比数列的前n项和,推导方法:乘公比,错位相减法.(3)一些常见的数列的前n项和:①;②;③;**错误的表达式**【例1】(2023·广东珠海·统考模拟预测)已知为等比数列,且,若.(1)求数列的通项公式;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(2)若,求数列的前项和.【答案】(1);(2)【解析】(1)设等比数列的公比为,则依题意有:,即,解得或(舍去)所以,(2),,且,是首项为3,公差为2的等差数列,【变式1-1】(2023·宁夏银川·高三校联考阶段练习)设正项等比数列且的等差中项为.(1)求数列的通项公式;(2)若,数列的前n项为,数列满足,为数列的前项和,求.【答案】(1);(2).【解析】(1)设等比数列的公比为,由题意,得,解得,则,所以数列的通项公式.(2)由(1)得,显然数列是等差数列,因此,,所以.【变式1-2】(2023·山西·校考模拟预测)已知等差数列满足.(1)求的通项公式;(2)设数列的前项和为,且,若,求的最小值.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【答案】(1);(2)10【解析】(1)设等差数列的公差为,则解得,故.(2)由(1)可得,则,所以,则数列是是等差数列,故.因为,所以,所以,所以或.因为,所以的最小值是10.【变式1-3】(2023·四川德阳·统考一模)已知首项为的等比数列的前项和为,且成等差数列.(1)求数列的通项公式;(2)求数列的最大项.【答案】(1);(2)【解析】(1)由题意得,设公比为,若,此时,此时不满足;若,则,故,即,由于,故,解得或1(舍去),故;(2),故,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以,令,由对勾函数可知在上单调递减,故当时,取得最大值,最大值为,故.数列的最大项为【变式1-4】(2023·山西临汾·校考模拟预测)在数列中,,且.(1)求的通项公式;(2)设为的前n项和,求使得成立的最小正整数n的值.【答案】(1);(2)13【解析】(1)由可得,所以,所以的奇数项以及偶数项均为公比为3的等比数列,由得,由,则,因此的奇数项以1为首项,3为公比的等比数列,偶数项以3为首项,公比为3的等比数列,故,(2),此时若,则,故,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com由于为单调递增数列,且,所以此时满足的最小的为,当为奇数时,此时,由,则,故,由于为单调递增数列,且,所以此时满足的最小的为13,综上可得使得成立的最小正整数n为13【题型2分组法求数列前n项和】满分技巧(1)适用范围:某些数列的求和是将数列转化为若干个可求和的新数列的和或差,从而求得原数列的和,注意在含有字母的数列中对字母的讨论.(2)常见类型:**错误的表达式**若an=bn±cn,且{bn},{cn}为等差或等比数列;**错误的表达式**通项公式为an=的数列,其中数列{bn},{cn}是等比数列或等差数列.【例2】(2023·山西忻州·高三校联考阶段练习)已知数列的前n项和为,,().(1)求的通项公式;(2)设数列,满足,,求数列的前n项和.【答案】(1);(2)【解析】(1)由题意可得(),两式作差,得(),则(),当时,,即,将代入,解得,则,适合(),所以,,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以是以为首项,为公比的等比数列,所以.(2)由(1得),.故.【变式2-1】(2023·江苏无锡·高三校联考阶段练习)...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2017年高考数学试卷(理)(新课标Ⅱ)(解析卷) (6).pdf
2017年高考数学试卷(理)(新课标Ⅱ)(解析卷) (6).pdf
免费
0下载
2024版《大考卷》全程考评特训卷·数学·文科【统考版】详解答案.docx
2024版《大考卷》全程考评特训卷·数学·文科【统考版】详解答案.docx
免费
21下载
2025版新高考版 数学考点清单+题型清单01专题一集合与常用逻辑用语01_1.2  常用逻辑用语讲解册.pdf
2025版新高考版 数学考点清单+题型清单01专题一集合与常用逻辑用语01_1.2 常用逻辑用语讲解册.pdf
免费
26下载
高中数学高考数学10大专题技巧--专题12 导数中隐零点的应用(教师版).docx
高中数学高考数学10大专题技巧--专题12 导数中隐零点的应用(教师版).docx
免费
0下载
2001年上海高考理科数学真题及答案.doc
2001年上海高考理科数学真题及答案.doc
免费
14下载
2021年高考数学试卷(文)(全国乙卷)(新课标Ⅰ)(解析卷).pdf
2021年高考数学试卷(文)(全国乙卷)(新课标Ⅰ)(解析卷).pdf
免费
0下载
2012年高考数学试卷(理)(浙江)(空白卷).pdf
2012年高考数学试卷(理)(浙江)(空白卷).pdf
免费
0下载
2024年新高考数学复习资料重难点突破09 函数零点问题的综合应用 (八大题型)(原卷版).docx
2024年新高考数学复习资料重难点突破09 函数零点问题的综合应用 (八大题型)(原卷版).docx
免费
0下载
2012年高考数学真题(文科)(大纲版)(解析版).doc
2012年高考数学真题(文科)(大纲版)(解析版).doc
免费
27下载
2024年高考数学一轮复习(新高考版) 第10章 §10.8 概率与统计的综合问题.pptx
2024年高考数学一轮复习(新高考版) 第10章 §10.8 概率与统计的综合问题.pptx
免费
0下载
2014年高考数学试卷(文)(天津)(空白卷).pdf
2014年高考数学试卷(文)(天津)(空白卷).pdf
免费
0下载
2017年高考数学试卷(理)(新课标Ⅱ)(空白卷) (11).pdf
2017年高考数学试卷(理)(新课标Ⅱ)(空白卷) (11).pdf
免费
0下载
2025年新高考数学复习资料专题11 数列的极限(典型题型归类训练)(原卷版).docx
2025年新高考数学复习资料专题11 数列的极限(典型题型归类训练)(原卷版).docx
免费
0下载
2024年高考数学试卷(文)(全国甲卷)(空白卷) (1).pdf
2024年高考数学试卷(文)(全国甲卷)(空白卷) (1).pdf
免费
0下载
2022·微专题·小练习·数学·理科【统考版】专练7.docx
2022·微专题·小练习·数学·理科【统考版】专练7.docx
免费
4下载
2013年高考数学试卷(江苏)(空白卷).doc
2013年高考数学试卷(江苏)(空白卷).doc
免费
0下载
高中数学·必修第一册(湘教版)课时作业(word)  课时作业(十五).docx
高中数学·必修第一册(湘教版)课时作业(word) 课时作业(十五).docx
免费
28下载
2016年高考数学试卷(理)(上海)(解析卷).pdf
2016年高考数学试卷(理)(上海)(解析卷).pdf
免费
0下载
2022年新高考全国I卷数学真题.docx
2022年新高考全国I卷数学真题.docx
免费
0下载
2015年辽宁高考文科数学真题及答案.doc
2015年辽宁高考文科数学真题及答案.doc
免费
5下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群
提交所需资料详情,我们来帮找资料