2025年新高考数学复习资料2025年高考数学一轮专题复习--数列专题七(含解析).doc本文件免费下载 【共21页】

2025年新高考数学复习资料2025年高考数学一轮专题复习--数列专题七(含解析).doc
2025年新高考数学复习资料2025年高考数学一轮专题复习--数列专题七(含解析).doc
2025年新高考数学复习资料2025年高考数学一轮专题复习--数列专题七(含解析).doc
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com人教A版数学--数列专题七知识点一根据规律填写数列中的某项,数列求和的其他方法,数列新定义典例1、对于项数为的有穷数列,设为中的最大值,称数列是的控制数列.例如数列3,5,4,7的控制数列是3,5,5,7.(1)若各项均为正整数的数列的控制数列是2,3,4,6,6,写出所有的;(2)设是的控制数列,满足(为常数,).证明:.(3)考虑正整数的所有排列,将每种排列都视为一个有穷数列.是否存在数列,使它的控制数列为等差数列?若存在,求出满足条件的数列的个数;若不存在,请说明理由.随堂练习:给定整数(),设集合,记集合.(1)若,求集合;(2)若构成以为首项,()为公差的等差数列,求证:集合中的元素个数为;(3)若构成以为首项,为公比的等比数列,求集合中元素的个数及所有小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com元素之和.典例2、设,为正整数,一个正整数数列,,…,满足,对,定义集合,数列,,…,中的()是集合中元素的个数.(1)若数列,,…,为5,3,3,2,1,1,写出数列,,…,;(2)若,,,,…,为公比为的等比数列,求;(3)对,定义集合,令是集合中元素的个数.求证:对,均有.随堂练习:已知数列的各项均为正整数,设集合小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com,记的元素个数为.(1)①若数列:,,,,求集合,并写出的值;②若数列:,,,,且,,求数列和集合;(2)若是递增数列,求证:“”的充要条件是“为等差数列”;(3)请你判断是否存在最大值,并说明理由.典例3、对于项数为m(且)的有穷正整数数列,记,即为中的最小值,设由组成的数列称为的“新型数列”.(1)若数列为2019,2020,2019,2018,2017,请写出的“新型数列”的所有项;(2)若数列满足,且其对应的“新型数列”项数,求的所有项的和;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(3)若数列的各项互不相等且所有项的和等于所有项的积,求符合条件的及其对应的“新型数列”.随堂练习:设数列()的各项均为正整数,且.若对任意,存在正整数使得,则称数列具有性质.(1)判断数列与数列是否具有性质;(只需写出结论)(2)若数列具有性质,且,,,求的最小值;(3)若集合,且(任意,).求证:存在,使得从中可以选取若干元素(可重复选取)组成一个具有性质的数列.知识点二利用定义求等差数列通项公式,裂项相消法求和,利用an与sn关系求通项或项小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com典例4、已知数列是等差数列,其前n项和为,,,数列满足(且),.(1)求和的通项公式;(2)求数列的前n项和.随堂练习:已知等差数列的各项均为正数,其前n项和为,且满足,.(1)求数列的通项公式;(2)若数列满足,且,求数列的前n项的和.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com典例5、已知数列的首项,其前n项和为,且满足.(1)求数列的通项公式;(2)设,数列的前n项和为,且,求n.随堂练习:已知数列的前项和,数列满足.(1)求证:数列是等差数列,并求数列的通项公式;(2)设,数列的前项和为,求满足的的最大值.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com典例6、在“①,,;②,;③”三个条件中任选一个,补充到下面的横线上,并解答.已知等差数列的前n项和为,且__________.(1)求的通项公式;(2)若,求的前n项和为,求证:.随堂练习:已知等差数列的前项和为,数列是各项均为正数的等比数列,,.(1)求数列的通项公式;(2)在①,②,③,这三个条件中任选一个,补充在下面问题小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com中,并作答.问题:已知,___________,是否存在正整数,使得数列的前项和?若存在,求的最小值;若不存在,说明理由.(注:如果选择多个条件分别解答,按第一个解答计分.)人教A版数学--数列专题七答案典例1、答案:...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2014年高考数学试卷(理)(山东)(解析卷).doc
2014年高考数学试卷(理)(山东)(解析卷).doc
免费
0下载
高中2022·微专题·小练习·数学【新高考】专练42.docx
高中2022·微专题·小练习·数学【新高考】专练42.docx
免费
0下载
2014年高考数学试卷(理)(辽宁)(解析卷).doc
2014年高考数学试卷(理)(辽宁)(解析卷).doc
免费
0下载
精品解析:上海市浦东新区2019-2020学年高三上学期期末数学试题(原卷版).docx
精品解析:上海市浦东新区2019-2020学年高三上学期期末数学试题(原卷版).docx
免费
0下载
2025年新高考数学复习资料2025届高中数学一轮复习讲义:第八章 第6讲第3课时 综合问题(含解析).docx
2025年新高考数学复习资料2025届高中数学一轮复习讲义:第八章 第6讲第3课时 综合问题(含解析).docx
免费
0下载
2020年高考数学试卷(新高考Ⅰ卷)(山东)(解析卷).doc
2020年高考数学试卷(新高考Ⅰ卷)(山东)(解析卷).doc
免费
0下载
2025年新高考数学复习资料考点巩固卷01 集合与常用逻辑用语(7大考点)(解析版).docx
2025年新高考数学复习资料考点巩固卷01 集合与常用逻辑用语(7大考点)(解析版).docx
免费
0下载
2024年新高考数学复习资料热点7-2 椭圆及其应用(8题型+满分技巧+限时检测)(原卷版).docx
2024年新高考数学复习资料热点7-2 椭圆及其应用(8题型+满分技巧+限时检测)(原卷版).docx
免费
0下载
2022·微专题·小练习·数学·理科【统考版】专练18.docx
2022·微专题·小练习·数学·理科【统考版】专练18.docx
免费
13下载
高中2024版考评特训卷·数学·理科【统考版】点点练 18.docx
高中2024版考评特训卷·数学·理科【统考版】点点练 18.docx
免费
0下载
高中数学·必修第一册(北师大版)课时作业WORD  章末质量检测(七).doc
高中数学·必修第一册(北师大版)课时作业WORD 章末质量检测(七).doc
免费
30下载
2012年浙江省高考数学【理】(原卷版).doc
2012年浙江省高考数学【理】(原卷版).doc
免费
26下载
2009年高考数学真题(文科)(广东自主命题)(原卷版).doc
2009年高考数学真题(文科)(广东自主命题)(原卷版).doc
免费
0下载
2022·微专题·小练习·数学·文科【统考版】专练1.docx
2022·微专题·小练习·数学·文科【统考版】专练1.docx
免费
16下载
2024年高考数学试卷(新课标Ⅱ卷)(空白卷) (7).docx
2024年高考数学试卷(新课标Ⅱ卷)(空白卷) (7).docx
免费
0下载
2023年高考数学试卷(文)(全国乙卷)(解析卷) (5).pdf
2023年高考数学试卷(文)(全国乙卷)(解析卷) (5).pdf
免费
0下载
2005年高考数学真题(广东自主命题).doc
2005年高考数学真题(广东自主命题).doc
免费
24下载
高中2024版《微专题》·数学(文)·统考版专练 13.docx
高中2024版《微专题》·数学(文)·统考版专练 13.docx
免费
0下载
专题11 排列组合与二项式(15区新题速递)(解析版).docx
专题11 排列组合与二项式(15区新题速递)(解析版).docx
免费
0下载
精品解析:江苏省扬州市宝应县2024届高三上学期期末模拟数学试题(解析版).docx
精品解析:江苏省扬州市宝应县2024届高三上学期期末模拟数学试题(解析版).docx
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群