小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com2025高考--圆锥曲线的方程(一轮复习)课时七知识点一根据a、b、c求椭圆标准方程,求椭圆的离心率或离心率的取值范围,求椭圆的切线方程,椭圆中三角形(四边形)的面积典例1、已知椭圆,其离心率为,若,分别为C的左、右焦点,x轴上方一点P在椭圆C上,且满足,.(1)求C的方程及点P的坐标;(2)过点P的直线l交C于另一点Q(点Q在第三象限),点M与点Q关于x轴对称,直线PM交x轴于点N,若的面积是的面积的2倍,求直线l的方程.随堂练习:已知椭圆的内接正方形的面积为,且长轴长为4.(1)求C的方程.(2)直线l经过点,且斜率大于零.过C的左焦点作直线l的垂线,垂足为A,过C的右焦点作直线l的垂线,垂足为B,试问在C内是否存在梯形,使得梯形的面积有最大值?若存在,求出该最大值;若不存在,请说明理由.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com典例2、已知椭圆()的离心率为,其右焦点为F,点,且.(1)求C的方程;(2)过点P且斜率为()的直线l与椭圆C交于A、B两点,过A、B分别作y轴的垂线,垂足为M、N,直线AN与直线交于点E,证明:B、M、E三点共线.随堂练习:已知椭圆C:过点,离心率.(1)求椭圆C的方程;(2)设椭圆C的左右两个顶点分别为A,B.过点的直线与椭圆C交于M、N(不与A、B重合)两点,直线AM与直线交于点Q,证明:B、N、Q三点共线.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com典例3、已知椭圆,左右焦点分别为,直线y=-x+1与椭圆相交于两点.(1)求椭圆的焦点坐标及离心率;(2)求的面积.随堂练习:已知椭圆:的长轴长为4,左、右顶点分别为,,经过点的动直线与椭圆相交于不同的两点,(不与点,重合).小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1)求椭圆的方程及离心率;(2)求四边形面积的最大值;知识点二根据a、b、c求椭圆标准方程,求椭圆的离心率或离心率的取值范围,椭圆中的直线过定点问题典例4、已知椭圆:()的左右焦点为,,上、下端点为,.若从,,,中任选三点所构成的三角形均为面积等于2的直角三角形.(1)求椭圆的方程;(2)如图,过点作两条不重合且,斜率之和为2的直线分别与椭圆交于,,,四点,若线段,的中点分别为,,试问直线是否过定点?如果是,求出定点坐标,如果小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com不是,请说明理由.随堂练习:已知椭圆上任意一点到椭圆两个焦点的距离之和为,且离心率为.(1)求椭圆的标准方程;(2)设为的左顶点,过点作两条互相垂直的直线分别与交于两点,证明:直线经过定点,并求这个定点的坐标.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com典例5、已知椭圆E经过点和点.(1)求椭圆的标准方程;(2)设圆,直线l与圆C相切于,与椭圆交于A,B两点,且,求直线l的方程.随堂练习:已知点B是圆上的任意一点,点,线段的垂直平分线交于点P.(1)求动点P的轨迹E的方程;(2)直线与E交于点M,N,且,求m的值.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com典例6、已知①如图,长为,宽为的矩形,以、为焦点的椭圆恰好过两点②设圆的圆心为,直线过点,且与轴不重合,直线交圆于两点,过点作的平行线交于,判断点的轨迹是否椭圆(1)在①②两个条件中任选一个条件,求椭圆的标准方程;(2)根据(1)所得椭圆的标准方程,若为椭圆上的点,,分别是椭圆的左右焦点,若,求的周长与面积.随堂练习:已知椭圆的左,右焦点分别为,,过的直线与椭圆交于,两点,圆是的内切圆.当直线的倾斜角为时,直线与椭圆交于点小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com.(1)求椭圆的方程;(2)求圆周长的最大值.2025高考--圆锥曲线的方程(一轮复习)课时七答案典例1、答案:(1);(2)解:(1)因为,所以,且.又,所以,即,即,所以,又离心率,所以,,所以,所以椭圆方程为.(2) ,又 ,∴,∴...