2025年新高考数学复习资料圆锥曲线的方程(三)讲义——2025届高三数学专项复习(含答案).docx本文件免费下载 【共18页】

2025年新高考数学复习资料圆锥曲线的方程(三)讲义——2025届高三数学专项复习(含答案).docx
2025年新高考数学复习资料圆锥曲线的方程(三)讲义——2025届高三数学专项复习(含答案).docx
2025年新高考数学复习资料圆锥曲线的方程(三)讲义——2025届高三数学专项复习(含答案).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com2025高考--圆锥曲线的方程(一轮复习)课时三知识点一根据椭圆过的点求标准方程,椭圆中的直线过定点问题典例1、已知椭圆经过点和点.(1)求椭圆的标准方程和离心率;(2)若、为椭圆上异于点的两点,且点在以为直径的圆上,求证:直线恒过定点.随堂练习:已知椭圆过点,且离心率为.(1)求该椭圆的方程;(2)在x轴上是否存在定点M,过该点的动直线l与椭圆C交于A,B两点,使得为定值?如果存在,求出点M坐标;如果不存在,请说明理由.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com典例2、已知椭圆经过点,其右顶点为.(1)求椭圆的方程;(2)若点、在椭圆上,且满足直线与的斜率之积为,证明直线经过定点.随堂练习:已知F是椭圆的左焦点,焦距为4,且C过点.(1)求C的方程;(2)过点F作两条互相垂直的直线l1,l2,若l1与C交于A,B两点,l2与C交于D,E两点,记AB的中点为M,DE的中点为N,试判断直线MN是否过定点,若过点,请求出定点坐标;若不过定点,请说明理由.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com典例3、已知为椭圆上任一点,,为椭圆的焦点,,离心率为.(1)求椭圆的方程;(2)若直线:与椭圆的两交点为A,,线段的中点在直线上,为坐标原点,当的面积等于时,求直线的方程.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com随堂练习:已知椭圆的对称中心为原点,焦点在轴上,左、右焦点分别为,,且,点在该椭圆上.(1)求椭圆的方程;(2)过的直线与椭圆相交于,两点,若的面积为,求以为圆心且与直线相切的圆的方程.知识点二根据双曲线的渐近线求标准方程,求双曲线中的弦长,由中点弦坐标或中点弦方程、斜率求参数,根据韦达定理求参数典例4、已知双曲线C的两焦点在坐标轴上,且关于原点对称.若双曲线C的实轴长为2,焦距为,且点P(0,-1)到渐近线的距离为.(1)求双曲线C的方程;(2)若过点P的直线l分别交双曲线C的左、右两支于点A、B,交双曲线C的两条渐近线于点D、E小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(D在y轴左侧).记和的面积分别为、,求的取值范围.随堂练习:双曲线的中心在原点,焦点在轴上,且焦点到其渐近线的距离为2.(1)求双曲线的标准方程;(2)过点的直线与双曲线的左、右两支分别交于,两点,与其渐近线分别交于,(从左至右)两点.①证明:;②是否存在这样的直线,使得,若存在,求出直线的方程;若不存在,请说明理由.典例5、已知两定点,满足条件的点P的轨迹是曲线E,直线y=kx-1与曲线E交于A,B两点,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1)求k的取值范围;(2)如果,且曲线E上存在点C,使,求m的值和的面积S.典例6、已知双曲线:的一条渐近线方程为,焦点到渐近线的距离为1.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1)求双曲线的标准方程与离心率;(2)已知斜率为的直线与双曲线交于轴上方的A,两点,为坐标原点,直线,的斜率之积为,求的面积.随堂练习:在平面直角坐标系中中,已知双曲线的一条渐近线方程为,过焦点垂直于实轴的弦长为.(1)求双曲线的方程;(2)若直线与双曲线交于两点,且,若的面积为,求直线的方程.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com2025高考--圆锥曲线的方程(一轮复习)课时三答案典例1、答案:(1)椭圆的标准方程为,离心率为(2)证明见解析解:(1)将点、的坐标代入椭圆的方程可得,解得,则,所以,椭圆的标准方程为,离心率为.(2)分以下两种情况讨论:①当直线的斜率存在时,设直线的方程为,设点、,联立可得,可得,由韦达定理可得,,,同理可得,由已知,则小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com,所以,,即,解得或.当时,直线的方程为,此时直线过点,不合乎题意;当时,直线的方程为,此时直线过定点,合乎题意;②当直...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
高中数学·必修第一册(北师大版)课时作业WORD  章末质量检测(五).doc
高中数学·必修第一册(北师大版)课时作业WORD 章末质量检测(五).doc
免费
15下载
精品解析:上海市崇明区2024届高三二模数学试题(原卷版).docx
精品解析:上海市崇明区2024届高三二模数学试题(原卷版).docx
免费
0下载
2022年高考数学试卷(新高考Ⅱ卷)(解析卷).pdf
2022年高考数学试卷(新高考Ⅱ卷)(解析卷).pdf
免费
0下载
2023《大考卷》二轮专项分层特训卷•数学·文科【统考版】热点问题专练 7.docx
2023《大考卷》二轮专项分层特训卷•数学·文科【统考版】热点问题专练 7.docx
免费
28下载
2024年高考数学一轮复习(新高考版) 第6章 §6.5 数列求和.pptx
2024年高考数学一轮复习(新高考版) 第6章 §6.5 数列求和.pptx
免费
0下载
第04讲+指数与指数函数(八大题型)(课件)-2025年高考数学一轮复习讲练测(新教材新高考).pptx
第04讲+指数与指数函数(八大题型)(课件)-2025年高考数学一轮复习讲练测(新教材新高考).pptx
免费
0下载
2025年新高考数学复习资料第二章 一元二次函数、方程和不等式(综合检测)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)解析版.docx
2025年新高考数学复习资料第二章 一元二次函数、方程和不等式(综合检测)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)解析版.docx
免费
0下载
高中2023《微专题·小练习》·数学·理科·L-3专练7 二次函数与幂函数.docx
高中2023《微专题·小练习》·数学·理科·L-3专练7 二次函数与幂函数.docx
免费
0下载
高中2022·微专题·小练习·数学·理科【统考版】专练37 .docx
高中2022·微专题·小练习·数学·理科【统考版】专练37 .docx
免费
0下载
2024年新高考数学复习资料第四章 导数及其应用(综合检测)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
2024年新高考数学复习资料第四章 导数及其应用(综合检测)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
免费
0下载
2016年高考数学真题( 江苏自主命题).doc
2016年高考数学真题( 江苏自主命题).doc
免费
7下载
2024版《大考卷》全程考评特训卷·数学【新教材】考点练3.docx
2024版《大考卷》全程考评特训卷·数学【新教材】考点练3.docx
免费
27下载
高中2024版《微专题》·数学·新高考专练 1.docx
高中2024版《微专题》·数学·新高考专练 1.docx
免费
0下载
2009年高考数学真题(理科)(安徽自主命题).doc
2009年高考数学真题(理科)(安徽自主命题).doc
免费
5下载
2015年湖南省高考数学试卷(文科).doc
2015年湖南省高考数学试卷(文科).doc
免费
0下载
思想04+运用转化与化归的思想方法解题(4大核心考点)(课件)-2024年高考数学二轮复习讲练测(新教材新高考).pptx
思想04+运用转化与化归的思想方法解题(4大核心考点)(课件)-2024年高考数学二轮复习讲练测(新教材新高考).pptx
免费
0下载
1999年高考数学真题(文科)(湖北自主命题).doc
1999年高考数学真题(文科)(湖北自主命题).doc
免费
9下载
2025年新高考数学复习资料专题14 导数与函数的单调性(九大题型+模拟精练)(解析版).docx
2025年新高考数学复习资料专题14 导数与函数的单调性(九大题型+模拟精练)(解析版).docx
免费
0下载
2019年高考数学试卷(上海)(秋考)(解析卷).doc
2019年高考数学试卷(上海)(秋考)(解析卷).doc
免费
0下载
2008年高考理科数学试题(天津卷)及参考答案.docx
2008年高考理科数学试题(天津卷)及参考答案.docx
免费
17下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群