2025年新高考数学复习资料特训07 利用导数解决双变量问题(三大题型)(解析版).docx本文件免费下载 【共58页】

2025年新高考数学复习资料特训07 利用导数解决双变量问题(三大题型)(解析版).docx
2025年新高考数学复习资料特训07 利用导数解决双变量问题(三大题型)(解析版).docx
2025年新高考数学复习资料特训07 利用导数解决双变量问题(三大题型)(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com特训07利用导数解决双变量问题(三大题型)如果两个变量之间不存在具体直观的等量关系,但可以通过适当的代数变形将两个变量化为某种结构的整体,常见如x₂-x,,这种通过换元实现双变量合二为一目的,把双变量转化为单变量的手段分别称为差值代换和比值代换“”“”.注:如果所给条件能转化为关于变量x₁,x₂的齐次式,常常建立关于的函数.导数中解决双变量问题的步骤:(1)先根据已知条件确定出两个变量x₁,x₂满足的条件;(2)将双变量转化为单变量,具体有两种可行的方法:将所有涉及①x₁,x₂的式子转化为关于的式子,令,将问题转化为关于自变量t的函数问题;令②t=x₂-x₁,将问题转化为关于自变量t的函数问题.注:需要关注新元的范围即为新函数的定义域,借助新函数的单调性和值域完成问题的分析求解.目录:01:转化为同源函数解决02:整体代换03:构造具体函数解决双变量问题01:转化为同源函数解决例1已知函数f(x)=lnx-ax+1,其中a为实常数.对于函数图象上任意不同的两点A(x1,f(x1)),B(x2,f(x2)),直线AB的斜率为k,若x1+x2+k>0恒成立,求a的取值范围.解由题意,k=,则原不等式化为x1+x2+>0,不妨设x1>x2>0,则(x1+x2)(x1-x2)+f(x1)-f(x2)>0,即x-x+f(x1)-f(x2)>0,即f(x1)+x>f(x2)+x.设g(x)=f(x)+x2=lnx+x2-ax+1,则g′(x)=+2x-a=,由已知,当x1>x2>0时,不等式g(x1)>g(x2)恒成立,则g(x)在(0,+∞)上是增函数.所以当x>0时,g′(x)≥0,即2x2-ax+1≥0,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com即a≤=2x+恒成立,因为2x+≥2,当且仅当2x=,即x=时取等号,所以min=2.故a的取值范围是(-,∞2].感悟提升此类问题一般是给出含有x1,x2,f(x1),f(x2)的不等式,若能通过变形,把不等式两边转化为结构形式相同的代数式,即转化为同源函数,可利用该函数单调性求解.训练1已知函数f(x)=alnx+x2,在其图象上任取两个不同的点P(x1,y1),Q(x2,y2)(x1>x2),总能使得>2,则实数a的取值范围为()A.(1,+∞)B.[1,+∞)C.(1,2)D.[1,2]答案B解析由>2,x1>x2>0,∴f(x1)-f(x2)>2x1-2x2,∴f(x1)-2x1>f(x2)-2x2,构造函数g(x)=f(x)-2x=alnx+x2-2x,则g(x1)>g(x2),函数∴g(x)在(0,+∞)上为增函数,由于g′(x)=+x-2,则g′(x)≥0对任意的x(0∈,+∞)恒成立,由g′(x)=+x-2≥0,可得a≥-x2+2x,当x>0时,则y=-x2+2x=-(x-1)2+1≤1,当且仅当x=1时,等号成立,∴a≥1,因此实数a的取值范围为[1,+∞).02:整体代换例2设函数f(x)=x2-(a+2)x+alnx,g(x)=2alnx-4x+b,其中a>0,b∈R.已知a>2,且方程f(x)=g(x)在(1,+∞)上有两个不相等的实数根x1,x2,求证:f′>0.证明方程f(x)=g(x),即x2-(a-2)x-alnx=b,在(1,+∞)上有两个不等实根x1和x2,不妨设1<x1<x2,则x-(a-2)x1-alnx1=b①,x-(a-2)x2-alnx2=b②,-得①②a=, a>2,f′(x)=2x-(a+2)+==,x>0,则f(x)在上单调递减,上单调递增,当∴x∈时,f′(x)<0,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com当x∈时,f′(x)>0,若证f′>0,只需证>,即a<x1+x2,只需证<x1+x2, x1<x2,∴x1+lnx1<x2+lnx2,即需证x+2x1-x-2x2>(x1+x2)(x1+lnx1-x2-lnx2),整理得lnx1-lnx2<,即证ln<,令t=∈(0,1),设h(t)=lnt-,h′(t)=>0,显然h(t)在(0,1)上单调递增.∴h(t)<h(1)=0,故f′>0得证.感悟提升(1)解此类题的关键是利用代入消元法消去参数a,得到仅含有x1,x2的式子.(2)与极值点x1,x2有关的双变量问题,一般是根据x1,x2是方程f′(x)=0的两个根,确定x1,x2的关系,再通过消元转化为只含有x1或x2的关系式,再构造函数解题,即把所给条件转化为x1,x2的齐次式,然后转化为关于的函数,把看作一个变量进行整体代换,从而把二元函数转化为一元函数来解决问题.训练2设a∈R,函数f(x)=lnx-ax,若f(x)有两个相异零点x1,x2,求证:lnx1+lnx2...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
高中数学高考数学10大专题技巧--专题五 三角恒等变换(方法篇)(教师版).docx
高中数学高考数学10大专题技巧--专题五 三角恒等变换(方法篇)(教师版).docx
免费
0下载
高中数学高考数学10大专题技巧--专题07 立体几何中空间角的计算(教师版).docx
高中数学高考数学10大专题技巧--专题07 立体几何中空间角的计算(教师版).docx
免费
0下载
2024年新高考数学复习资料大题培优02 数列综合大题归类( 11大题型)(原卷版).docx
2024年新高考数学复习资料大题培优02 数列综合大题归类( 11大题型)(原卷版).docx
免费
0下载
2018年高考数学试卷(文)(新课标Ⅱ)(解析卷) (7).pdf
2018年高考数学试卷(文)(新课标Ⅱ)(解析卷) (7).pdf
免费
0下载
2022年高考数学试卷(文)(全国甲卷)(解析卷).pdf
2022年高考数学试卷(文)(全国甲卷)(解析卷).pdf
免费
0下载
2024年新高考数学复习资料跟踪训练03 空间直线、平面的平行(解析版).docx
2024年新高考数学复习资料跟踪训练03 空间直线、平面的平行(解析版).docx
免费
0下载
2023年新课标全国Ⅰ卷数学真题.docx
2023年新课标全国Ⅰ卷数学真题.docx
免费
0下载
2023高考真题 新高考II卷数学-解析 .pdf
2023高考真题 新高考II卷数学-解析 .pdf
免费
12下载
2015年上海市徐汇区、金山区、松江区高考数学二模试卷(文科).doc
2015年上海市徐汇区、金山区、松江区高考数学二模试卷(文科).doc
免费
0下载
2018年上海市高考数学试卷(1)往年高考真题.doc
2018年上海市高考数学试卷(1)往年高考真题.doc
免费
0下载
2025年新高考数学复习资料提优点4 必要性探路.pptx
2025年新高考数学复习资料提优点4 必要性探路.pptx
免费
0下载
高中2024版考评特训卷·数学·文科【统考版】单元检测(十).docx
高中2024版考评特训卷·数学·文科【统考版】单元检测(十).docx
免费
0下载
2024年高考数学一轮复习(新高考版) 第8章 §8.12 圆锥曲线中定点与定值问题.pptx
2024年高考数学一轮复习(新高考版) 第8章 §8.12 圆锥曲线中定点与定值问题.pptx
免费
0下载
精品解析:上海市崇明区2024届高三一模数学试题(原卷版).docx
精品解析:上海市崇明区2024届高三一模数学试题(原卷版).docx
免费
0下载
2014年浙江省高考数学试卷(理科).doc
2014年浙江省高考数学试卷(理科).doc
免费
1下载
专题06 平面向量(15区新题速递)(解析版).docx
专题06 平面向量(15区新题速递)(解析版).docx
免费
0下载
2024年高考数学试卷(文)(全国甲卷)(空白卷) (1).pdf
2024年高考数学试卷(文)(全国甲卷)(空白卷) (1).pdf
免费
0下载
2024年新高考数学复习资料2024年高考数学一轮复习(新高考版) 第8章 §8.12 圆锥曲线中定点与定值问题.docx
2024年新高考数学复习资料2024年高考数学一轮复习(新高考版) 第8章 §8.12 圆锥曲线中定点与定值问题.docx
免费
0下载
2012年高考数学试卷(理)(上海)(解析卷).doc
2012年高考数学试卷(理)(上海)(解析卷).doc
免费
0下载
上海市金山区2020年高三第一学期期末(一模)数学答案.doc
上海市金山区2020年高三第一学期期末(一模)数学答案.doc
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群