小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com人教A版数学--高考解析几何复习专题九知识点一根据双曲线的渐近线求标准方程,求双曲线中的弦长,由中点弦坐标或中点弦方程、斜率求参数,根据韦达定理求参数典例1、已知双曲线与有相同的渐近线,且经过点.(1)求双曲线C的方程,并写出其离心率与渐近线方程;(2)已知直线与双曲线C交于不同的两点A,B,且线段AB的中点在圆上,求实数m的值.随堂练习:已知椭圆长轴的顶点与双曲线实轴的顶点相同,且的右焦点到的渐近线的距离为.(1)求与的方程;(2)若直线的倾斜角是直线的倾斜角的倍,且经过点,与交于、两点,与交于、两点,求.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com典例2、已知双曲线的离心率为2,F为双曲线C的右焦点,M为双曲线C上的任一点,且点M到双曲线C的两条渐近线距离的乘积为,(1)求双曲线C的方程;(2)设过点F且与坐标轴不垂直的直线l与双曲线C相交于点P,Q,线段PQ的垂直平分线与x轴交于点B,求的值.随堂练习:已知双曲线的右焦点为,过点F与x轴垂直的直线与双曲线C交于M,N两点,且.(1)求C的方程;(2)过点的直线与双曲线C的左右两支分别交于、D,E两小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com点,与双曲线C的两条渐近线分别交于G,H两点,若,求实数的取值范围.典例3、已知抛物线:()的焦点为,为上的动点,为在动直线()上的投影.当为等边三角形时,其面积为.(1)求的方程;(2)设为原点,过点的直线与相切,且与椭圆交于,两点,直线与交于点.试问:是否存在,使得为的中点?若存在,求的值;若不存在,请说明理由.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com随堂练习:已知双曲线(,)的左、右焦点分别为,,点在双曲线C上,TP垂直x轴于点P,且点P到双曲线C的渐近线的距离为2.(1)求双曲线C的标准方程;(2)已知过点的直线l与双曲线C的右支交于A,B两点,且的外接圆圆心Q在y轴上,求满足条件的所有直线l的方程.知识点二根据椭圆过的点求标准方程,根据韦达定理求参数典例4、已知椭圆的离心率为,且经过点,椭圆C的右顶点到抛物线的准线的距离为4.(1)求椭圆C和抛物线E的方程;(2)设与两坐标轴都不垂直的直线l与抛物线E相交于A,B两点,与椭圆C相交于M,N两点,O为坐标原点,若,则在x轴上是否存在点H,使得x轴平分?若存在,求出点H的坐标;若不存在,请说明理由.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com随堂练习:已知椭圆的左右焦点分别为、,离心率为,以原点为圆心椭圆、短半轴长为半径的圆与直线相切.(1)求椭圆的标准方程;(2)过点作直线交椭圆于两点(直线与轴不重合).在轴上是否存在点,使得直线与的斜率之积为定值?若存在,求出所有满足条件的点的坐标;若不存在,请说明理由.典例5、已知椭圆的右焦点为,短半轴长为,为椭圆上一点,的最小值为.(1)求椭圆的标准方程及离心率;(2)若过点的直线与椭圆相交于,两小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com点,试问:在轴上是否存在异于点的定点,满足?若存在,求出点的坐标;若不存在,请说明理由.随堂练习:设中心在原点,焦点在轴上的椭圆过点,且离心率为,为的右焦点,为上一点,轴,的半径为.(1)求椭圆和的方程;(2)若直线与交于,两点,与交于,两点,其中,在第一象限,是否存在使?若存在,求的方程:若不存在,说明理由.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com典例6、已知在中,两直角边,的长分别为和,以的中点为原点,所在直线为轴,以的垂直平分线为轴建立平面直角坐标系,椭圆以,为焦点,且经过点.(1)求椭圆的方程;(2)直线:与相交于,两点,在轴上是否存在点,使得为等边三角形,若存在,求出直线的方程;若不存在,请说明理由.随堂练习:已知椭圆的中心在坐标原点,焦点在轴上,其左、右焦点分别为,,短轴长为.点在椭圆上,且满足△的周长为6.(1)...