2025年新高考数学复习资料2025高考总复习专项复习--圆锥曲线的方程专题五.doc本文件免费下载 【共19页】

2025年新高考数学复习资料2025高考总复习专项复习--圆锥曲线的方程专题五.doc
2025年新高考数学复习资料2025高考总复习专项复习--圆锥曲线的方程专题五.doc
2025年新高考数学复习资料2025高考总复习专项复习--圆锥曲线的方程专题五.doc
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com人教A版数学--高考解析几何复习专题五知识点一求双曲线中三角形(四边形)的面积问题,根据韦达定理求参数典例1、已知双曲线的左、右焦点分别为、,双曲线的右顶点在圆上,且.(1)求双曲线的方程;(2)动直线与双曲线恰有1个公共点,且与双曲线的两条渐近线分别交于点、,设为坐标原点.求证:的面积为定值.随堂练习:已知双曲线C:的离心率为,焦点到其渐近线的距离为1.(1)求双曲线C的标准方程;(2)已知直线l:与双曲线C交于A,B两点,O为坐标原点,直线OA,OB的斜率之积为,求△OAB的面积.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com典例2、已知双曲线:的右焦点与抛物线的焦点重合,一条渐近线的倾斜角为.(1)求双曲线的方程;(2)经过点的直线与双曲线的右支交与两点,与轴交与点,点关于原点的对称点为点,求证:.随堂练习:已知椭圆与双曲线的离心率互为倒数,的左右焦点分、别为,,且到的一条渐近线的距离为1.(1)求的标准方程;(2)若是与在第一象限的交点,与的另一个交点小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com为P,与的另一个交点为,与的面积分别为,,求.典例3、已知双曲线:的一条渐近线方程为,焦点到渐近线的距离为1.(1)求双曲线的标准方程与离心率;(2)已知斜率为的直线与双曲线交于轴上方的A,两点,为坐标原点,直线,的斜率之积为,求的面积.随堂练习:在平面直角坐标系中中,已知双曲线的一条渐近线小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com方程为,过焦点垂直于实轴的弦长为.(1)求双曲线的方程;(2)若直线与双曲线交于两点,且,若的面积为,求直线的方程.知识点二直线与抛物线交点相关问题,根据韦达定理求参数典例4、已知抛物线C:y2=4x的焦点为F,过点P(2,0)的直线l交抛物线C于A(x1,y1)和B(x2,y2)两点.(1)当x1+x2=8时,求直线l的方程;(2)若过点P(2,0)且垂直于直线l的直线l'与抛物线C交于M,N两点,记△ABF与△MNF的面积分别为S1与S2,求S1S2的最小值.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com随堂练习:已知抛物线的焦点为,斜率为2的直线与抛物线相交于、两点.(1)若直线与抛物线的准线相交于点,且,求直线的方程;(2)若直线不过原点,且,求的周长.典例5、已知抛物线的焦点为F,过F的直线l交C于A,B两点.(1)当l的倾斜角为时,若,求;(2)设点,且,求l的方程.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com随堂练习:已知抛物线的焦点为,直线过点,且与抛物线交于、两点,.(1)求的取值范围;(2)若,点的坐标为,直线与抛物线的另一个交点为,直线与抛物线的另一个交点为,直线与轴交于点,求的取值范围.典例6、已知抛物线的焦点为F,过点F的直线l交抛物线C于M,N两点,交y轴于P点,点N位于点M和点P之间.(1)若,求直线l的斜率;(2)若,证明:为定值.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com随堂练习:已知抛物线的焦点为.(1)如图所示,线段为过点且与轴垂直的弦,动点在线段上,过点且斜率为1的直线与抛物线交于两点,请问是否为定值,若是,求出该定值;若不是,说明理由;(2)过焦点作直线与交于两点,分别过作抛物线的切线,已知两切线交于点,求证:直线、、的斜率成等差数列.人教A版数学--高考解析几何复习专题五答案典例1、答案:(1)(2)证明见解析解:(1)不妨设,因为,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com从而故由,又因为,所以,又因为在圆上,所以所以双曲线的标准方程为:(2)设直线与轴交于点,双曲线的渐近线方程为由于动直线与双曲线恰有1个公共点,且与双曲线的两条渐近线分别交于点,当动直线的斜率不存在时,,,,当动直线的斜率存在时,且斜率,不妨设直线,故由依题意,且,化简得,故由,同理可求,,所以又因为原点到直线的距离,所以,又由所以,故...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2015年高考数学真题(理科)(湖北自主命题).doc
2015年高考数学真题(理科)(湖北自主命题).doc
免费
21下载
2025年新高考数学复习资料考点12对数与对数函数(3种核心题型+基础保分练+综合提升练+拓展冲刺练)原卷版.docx
2025年新高考数学复习资料考点12对数与对数函数(3种核心题型+基础保分练+综合提升练+拓展冲刺练)原卷版.docx
免费
0下载
2000年云南高考文科数学真题及答案.doc
2000年云南高考文科数学真题及答案.doc
免费
5下载
2008年高考数学试卷(文)(湖南)(解析卷) .doc
2008年高考数学试卷(文)(湖南)(解析卷) .doc
免费
0下载
2014年上海市宝山区、静安区、杨浦区、青浦区四区联考高考数学二模试卷(文科).doc
2014年上海市宝山区、静安区、杨浦区、青浦区四区联考高考数学二模试卷(文科).doc
免费
0下载
2024年新高考数学复习资料第11讲 对数与对数函数(精讲)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
2024年新高考数学复习资料第11讲 对数与对数函数(精讲)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
免费
0下载
2010年高考数学试卷(理)(天津)(解析卷) (1).docx
2010年高考数学试卷(理)(天津)(解析卷) (1).docx
免费
0下载
2010年高考数学试卷(理)(新课标)(解析卷).doc
2010年高考数学试卷(理)(新课标)(解析卷).doc
免费
0下载
2001年新疆高考文科数学真题及答案.doc
2001年新疆高考文科数学真题及答案.doc
免费
28下载
高中数学高考数学10大专题技巧--专题30  证明数量关系型问题(教师版).docx
高中数学高考数学10大专题技巧--专题30 证明数量关系型问题(教师版).docx
免费
0下载
2013年高考数学试卷(文)(大纲版)(解析卷).pdf
2013年高考数学试卷(文)(大纲版)(解析卷).pdf
免费
0下载
2024版《大考卷》全程考评特训卷·数学【新教材】单元过关检测三.docx
2024版《大考卷》全程考评特训卷·数学【新教材】单元过关检测三.docx
免费
8下载
2024年高考数学试卷(新课标Ⅰ卷)(空白卷) (7).docx
2024年高考数学试卷(新课标Ⅰ卷)(空白卷) (7).docx
免费
0下载
2022年高考全国乙卷数学(理)真题.docx
2022年高考全国乙卷数学(理)真题.docx
免费
0下载
2016年高考数学试卷(文)(新课标Ⅱ)(空白卷) (1).pdf
2016年高考数学试卷(文)(新课标Ⅱ)(空白卷) (1).pdf
免费
0下载
2019年高考数学真题(文科)(新课标Ⅱ)(解析版).doc
2019年高考数学真题(文科)(新课标Ⅱ)(解析版).doc
免费
5下载
专题10  解三角形(解析版).docx
专题10 解三角形(解析版).docx
免费
0下载
精品解析:上海市浦东新区2023届高三二模数学试题(原卷版).docx
精品解析:上海市浦东新区2023届高三二模数学试题(原卷版).docx
免费
0下载
精品解析:江苏省常熟市2024届高三上学期阶段性抽测二数学试题(解析版).docx
精品解析:江苏省常熟市2024届高三上学期阶段性抽测二数学试题(解析版).docx
免费
0下载
2024年新高考数学复习资料重难点突破09 函数零点问题的综合应用 (八大题型)(解析版).docx
2024年新高考数学复习资料重难点突破09 函数零点问题的综合应用 (八大题型)(解析版).docx
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群