小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com特训14同构思想在解析几何的应用(五大题型)数学中的同构式是指除了变量不同,而结构相同的表达式,下面提供其理论基础:若实数①a,b分别满足f(a)=0,f(b)=0,由此a,b可视为方程f(x)=0的两个根.——双切线、斜率和(积)为定值时,恒过定点问题的核心思路.如果②A(x1,y₁),B(x₂,y₂)满足的方程结构相同,则A,B为方程所表示的曲线上的两点.特别地,若A(x₁,y),B(x₂,y₂)满足ax1+by1+c=0,ax₂+by₂+c=0,则直线AB的方程为ax+by+c=0.——切点弦方程推导的核心思路.思维点拨:同构思想是数学中代数处理的一种重要思想,其关键在于发现代数式子结构的相似性,对其进行代数变形的统一构造处理.同构思想在解析几何中的应用非常广泛,比如斜率和、斜率积为定值,恒过定点,切点弦,双切线等问题,使用同构思想可以大大简化运算,实现数与形的完美结合.目录:01定点问题02定值问题03定比分点问题04双切线问题05切点弦问题01定点问题1.已知椭圆的左、右焦点别为,,离心率为,过点的动直线l交E于A,B两点,点A在x轴上方,且l不与x轴垂直,的周长为,直线与E交于另一点C,直线与E交于另一点D,点P为椭圆E的下顶点,如图.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1)求E的方程;(2)证明:直线CD过定点.【答案】(1)(2)证明见解析【分析】(1)利用椭圆的定义和离心率,求解椭圆方程;(2)设点A(x1,y1),B(x2,y2),,,的方程为,联立直线与椭圆的方程,根据韦达定理求出点的坐标,同理得到点的坐标,进而得到直线的方程,根据对称性,如果直线CD过定点,则该定点在x轴上,即可得到定点坐标.【解析】(1)由椭圆定义可知,|BF1)+|BF2)=2a,所以的周长为,所以,又因为椭圆离心率为,所以,所以,又,所以椭圆的方程:.(2)设点A(x1,y1),B(x2,y2),,,则直线的方程为,则,由得,,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以,因为,所以,所以,故,又,同理,,,由A,,B三点共线,得,所以,直线CD的方程为,由对称性可知,如果直线CD过定点,则该定点在x轴上,令得,,故直线CD过定点.【点睛】方法点睛:求解直线过定点问题常用方法如下:(1)特殊探路,一般证明:即先通过特殊情况确定定点,再转化为有方向、有目的的一般性证明;“”(2)一般推理,特殊求解:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方“”程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(3)求证直线过定点,常利用直线的点斜式方程或截距式来证明.2.在平面直角坐标系中,抛物线的焦点到准线的距离等于椭圆的短轴长,点在抛物线上,圆(其中).(1)若为圆上的动点,求线段长度的最小值;(2)设是抛物线上位于第一象限的一点,过作圆的两条切线,分别交抛物线于点.证明:直线经过定点.【答案】(1)(2)证明见解析【分析】(1)根据椭圆的短轴可得抛物线方程,进而根据两点斜率公式,结合三角形的三边关系,即可由二次函数的性质求解,(2)根据两点坐标可得直线的直线方程,由直线与圆相切可得是方程的两个解,即可利用韦达定理代入化简求解定点.【解析】(1)由题意得椭圆的方程:,所以短半轴所以,所以抛物线的方程是.设点,则,所以当时,线段长度取最小值.(2)是抛物线上位于第一象限的点,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com,且.设,则:直线,即,即.直线,即.由直线与圆相切得,即.同理,由直线与圆相切得.所以是方程的两个解,.代入方程得,解得直线恒过定点.【点睛】圆锥曲线中定点问题的两种解法(1)引进参数法:先引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法:先根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc...