2024年新高考数学复习资料抢分专练02 立体几何(解析版).docx本文件免费下载 【共40页】

2024年新高考数学复习资料抢分专练02 立体几何(解析版).docx
2024年新高考数学复习资料抢分专练02 立体几何(解析版).docx
2024年新高考数学复习资料抢分专练02 立体几何(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com抢分专练02立体几何一、单选题1.(2024·江西南昌·二模)校足球社团为学校足球比赛设计了一个奖杯,如图,奖杯的设计思路是将侧棱长为6的正三棱锥的三个侧面沿AB,BC,AC展开得到面,使得平面均与平面ABC垂直,再将球放到上面使得三个点在球的表面上,若奖杯的总高度为,且,则球的表面积为()A.B.C.D.【答案】C【详解】如图:连接、、,取、、中点、、,连接、、,由已知侧棱长为的正三棱锥,即,又因为,所以,因为平面,,均与平面垂直,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com设,,三点所在的圆为圆,底面的中心为,则,又因为奖杯总高度为,设球半径为,球心到圆面的距离为,则,即,如图,易知≌,因为,所以是边长为的等边三角形,设的外接圆半径为,则,则在直角中,,即,解得,所以.故选:C.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com2.(2024·全国·模拟预测)在长方体中,,过顶点作平面,使得平面,若平面,则直线l和直线所成角的余弦值为()A.B.C.D.【答案】C【详解】因为平面,平面,平面平面,所以,所以即直线l和直线所成角或其补角,在中,,,,由余弦定理得,故直线l和直线所成角的余弦值为.故选:C.3.(2024·全国·模拟预测)已知中,C为直角,若分别以边CA,CB,AB所在的直线为轴旋转一周,得到几何体的体积为,,,则()A.B.C.D.【答案】A【详解】设,,则由题意得,,,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以,,.故选:A.4.(2024·河北·二模)已知一个底面内口直径为的圆柱体玻璃杯中盛有高为的水,向该杯中放入一个半径为的实心冰球和一个半径为的实心钢球,待实心冰球融化后实心钢球恰好淹没在水中(实心钢球与杯中水面、杯底均相切),若实心冰球融化为水前后的体积变化忽略不计,则实心钢球的表面积为()A.B.C.D.【答案】D【详解】由题意可得,实心冰球融化前后体积不变,则有,化简可得:,即,,解得:,所以钢球的表面积为.故选:D5.(2024·陕西安康·模拟预测)随着古代瓷器工艺的高速发展,在著名的宋代五大名窑之后,又增加了三种瓷器,与五大名窑并称为中国八大名瓷,其中最受欢迎的是景德镇窑.如图,景德镇产的青花玲珑瓷(无盖)的形状可视为一个球被两个平行平面所截后剩下的部分,其中球面被平面所截的部分均可视为球冠(截得的圆面是底,垂直于圆面的直径被截得的部分是高,其面积公式为,其中为球的半径,为球冠的高).已知瓷器的高为,在高为处有最大直径(外径)为,则该瓷器的外表面积约为(取3.14)()小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.B.C.D.【答案】C【详解】由题意可知:球的半径为,上球冠的高,下球冠的高,设下底面圆的半径为,则,所以该瓷器的外表面积为.故选:C.6.(2024·青海·模拟预测)如图,在正方体中,,,,,,分别为棱,,,,,的中点,为的中点,连接,.对于空间任意两点,,若线段上不存在也在线段,上的点,则称,两点“可视”,则与点“可视”的点为()A.B.C.D.【答案】D【详解】如图,连接,,,由正方体的性质及、分别为棱、的中点,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com易得,所以线段与相交,与相交,故A、B错误;连接,,有,,故,所以线段与相交,C错误;连接,直线与,直线与均为异面直线,D正确.故选:D.7.(2024·全国·模拟预测)如图,在直三棱柱中,,P为线段的中点,Q为线段(包括端点)上一点,则的面积的最大值为()A.B.C.2D.【答案】A【详解】取AB的中点E,连接CE,过Q作,垂足为M,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com过M作,垂足为N,连接QN,PE,则,且,点E到BC的距离为.由直三棱柱的性质知平面ABC,所以平面ABC,MN,平面ABC,则,,且,QM,平面QMN,所以平面QMN,且平面QMN,则,可知,当且仅当点Q与点P重合时,等号...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
高中数学·选择性必修·第一册·湘教版课时作业word  课时作业(三十七) 二项式定理(2).docx
高中数学·选择性必修·第一册·湘教版课时作业word 课时作业(三十七) 二项式定理(2).docx
免费
26下载
2019年上海市青浦区高考数学一模试卷(含解析版).doc
2019年上海市青浦区高考数学一模试卷(含解析版).doc
免费
0下载
2024年新高考数学复习资料专题22 计数原理与二项式定理(原卷版).docx
2024年新高考数学复习资料专题22 计数原理与二项式定理(原卷版).docx
免费
0下载
2016年江苏省高考数学试卷.doc
2016年江苏省高考数学试卷.doc
免费
0下载
高中数学高考数学10大专题技巧--专题05 立体几何中的截面问题(学生版).docx.doc
高中数学高考数学10大专题技巧--专题05 立体几何中的截面问题(学生版).docx.doc
免费
0下载
2024届高考数学考向核心卷—新课标版 答案.pdf
2024届高考数学考向核心卷—新课标版 答案.pdf
免费
12下载
2013年高考数学试卷(理)(陕西)(解析卷).doc
2013年高考数学试卷(理)(陕西)(解析卷).doc
免费
0下载
2000年青海高考文科数学真题及答案.doc
2000年青海高考文科数学真题及答案.doc
免费
14下载
精品解析:江苏省张家港市2023-2024学年高三下学期2月阶段性调研测试数学试卷(原卷版).docx
精品解析:江苏省张家港市2023-2024学年高三下学期2月阶段性调研测试数学试卷(原卷版).docx
免费
0下载
2025年新高考数学复习资料专题突破卷14 累加、累乘、构造法求数列通项公式(解析版).docx
2025年新高考数学复习资料专题突破卷14 累加、累乘、构造法求数列通项公式(解析版).docx
免费
0下载
高中数学·必修第一册(湘教版)课时作业(word)  课时作业(四十九) .docx
高中数学·必修第一册(湘教版)课时作业(word) 课时作业(四十九) .docx
免费
30下载
2023年高考数学试卷(新课标Ⅱ卷)(解析卷) (5).docx
2023年高考数学试卷(新课标Ⅱ卷)(解析卷) (5).docx
免费
0下载
2023《微专题·小练习》·数学·理科·L-3专练46 高考大题专练(四) 立体几何的综合运用.docx
2023《微专题·小练习》·数学·理科·L-3专练46 高考大题专练(四) 立体几何的综合运用.docx
免费
13下载
2018年高考数学试卷(上海)(秋考)(空白卷).pdf
2018年高考数学试卷(上海)(秋考)(空白卷).pdf
免费
0下载
高中数学·必修第二册(RJ-A版)课时作业 WORD  详解答案.doc
高中数学·必修第二册(RJ-A版)课时作业 WORD 详解答案.doc
免费
27下载
上海市各区高三数学一模模块汇编解析几何汇编--教师版.docx
上海市各区高三数学一模模块汇编解析几何汇编--教师版.docx
免费
0下载
2024年新高考数学复习资料易错点10  立体几何-备战2022年高考数学考试易错题(新高考专用)(学生版) .docx
2024年新高考数学复习资料易错点10 立体几何-备战2022年高考数学考试易错题(新高考专用)(学生版) .docx
免费
0下载
2012年上海市杨浦区高考数学一模试卷(理科).doc
2012年上海市杨浦区高考数学一模试卷(理科).doc
免费
0下载
高中数学·必修第四册·RJ-B课时作业(word)  课时作业 4.docx
高中数学·必修第四册·RJ-B课时作业(word) 课时作业 4.docx
免费
10下载
2015年上海市杨浦区高考数学二模试卷(文科).doc
2015年上海市杨浦区高考数学二模试卷(文科).doc
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群