小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com押北京卷16题三角函数与解三角形核心考点考情统计考向预测备考策略解三角形2022·北京卷T16预测2024年新高考命题方向将继续以三角函数或解三角形问题展开命题.三角恒等变换是利用三角恒等式(两角和与差、二倍角的正弦、余弦、正切公式)进行变换,“角”的变换是三角恒等变换的核心;正弦定理与余弦定理以及解三角形是高考的必考内容,主要考查边、角、面积、周长等的计算.三角函数与开放题2023·北京卷T17解三角形与开放题2021·北京卷T161.(2022·北京卷T16)在中,.(1)求;(2)若,且的面积为,求的周长.【解】(1)解:因为,则,由已知可得,可得,因此,.(2)解:由三角形的面积公式可得,解得.由余弦定理可得,,所以,的周长为.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com2.(2023·北京卷T17)设函数.(1)若,求的值.(2)已知在区间上单调递增,,再从条件①、条件②、条件③这三个条件中选择一个作为已知,使函数存在,求的值.条件①:;条件②:;条件③:在区间上单调递减.注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.【解】(1)因为所以,因为,所以.(2)因为,所以,所以的最大值为,最小值为.若选条件①:因为的最大值为,最小值为,所以无解,故条件①不能使函数存在;若选条件②:因为在上单调递增,且,所以,所以,,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以,又因为,所以,所以,所以,因为,所以.所以,;若选条件③:因为在上单调递增,在上单调递减,所以在处取得最小值,即.以下与条件②相同.3.(2021·北京卷T16)在中,,.(1)求;(2)再从条件①、条件②、条件③这三个条件中选择一个作为已知,使存在且唯一确定,求边上中线的长.条件①:;条件②:的周长为;条件③:的面积为;【解】(1),则由正弦定理可得,,,,,,解得;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(2)若选择①:由正弦定理结合(1)可得,与矛盾,故这样的不存在;若选择②:由(1)可得,设的外接圆半径为,则由正弦定理可得,,则周长,解得,则,由余弦定理可得边上的中线的长度为:;若选择③:由(1)可得,即,则,解得,则由余弦定理可得边上的中线的长度为:.1.讨论三角函数的单调性,研究三角函数的周期性、奇偶性与对称性,都必须首先利用辅助角公式,将函数化成一个角的一种三角函数.2.求函数y=Asin(ωx+φ)(A>0,ω>0)的单调区间,是将ωx+φ作为一个整体代入正弦函数增区间(或减区间),求出的区间即为y=Asin(ωx+φ)的增区间(或减区间).小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com3.正弦定理:在△ABC中,===2R(R为△ABC的外接圆半径).4.余弦定理:在△ABC中,a2=b2+c2-2bccosA.变形:b2+c2-a2=2bccosA,cosA=.5.利用正、余弦定理解决实际问题的一般流程:6.涉及正、余弦定理与三角形面积的综合问题求三角形面积时常用S=absinC形式的面积公式.7.对于解三角形的开放性问题,要根据自己的实际情况,选择自己最熟悉,易转化的条件用以求解.8.与面积有关的问题,一般要根据已知角来选择三个面积公式(S=absinC=bcsinA=acsinB)中的一个,同时再用正、余弦定理进行边角转化.1.在中,.(1)求;(2)若,求的面积.【解】(1)因为,由正弦定理可得,又,所以,得到,即,所以,又因为,所以,得到.(2)由(1)知,所以,又,得到①,又,得到代入①式,得到,所以的面积为.2.在中,,且.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1)求的大小;(2)再从条件①、条件②、条件③这三个条件中选择一个作为已知,使存在且唯一确定,求的面积.条件①:为锐角;条件②:;条件③:.注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别作答,按第一个解答计分.【解】(1)因为,所以,所以,由得,.(2)...