2025年新高考数学复习资料专题15 导数与函数的极值、最值(十一大题型+模拟精练)(解析版).docx本文件免费下载 【共56页】

2025年新高考数学复习资料专题15 导数与函数的极值、最值(十一大题型+模拟精练)(解析版).docx
2025年新高考数学复习资料专题15 导数与函数的极值、最值(十一大题型+模拟精练)(解析版).docx
2025年新高考数学复习资料专题15 导数与函数的极值、最值(十一大题型+模拟精练)(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题15导数与函数的极值、最值(十一大题型+模拟精练)目录:01函数极值的辨析02求已知函数的极值03根据极值求参数04函数(导函数)图像与极值的关系05由导数求函数的最值06已知函数最值求参数07根据极值点求参数08由导数求函数的最大值(含参)09恒成立问题10零点问题11导数的综合应用01函数极值的辨析1.(2024高三·全国·专题练习)下列函数中,存在极值的函数为()A.B.C.D.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【答案】D【分析】根据极值的定义进行求解即可.【解析】A:因为函数是实数集上的增函数,所以函数没有极值;B:因为函数是正实数集上的增函数,所以函数没有极值;C:因为函数在区间、上是减函数,所以函数没有极值;D:因为,所以该函数在上是增函数,在上是减函数,因此是函数的极小值点,符合题意,故选:D2.(2024高三·全国·专题练习)下列结论中,正确的是()A.若在上有极大值,则极大值一定是上的最大值.B.若在上有极小值,则极小值一定是上的最小值.C.若在上有极大值,则极大值一定是在和处取得.D.若在上连续,则在上存在最大值和最小值.【答案】D【分析】根据极值和最值的定义逐一分析判断即可.【解析】函数在上的极值不一定是最值,最值也不一定是极值,故AB错误;函数在上的极值一定不会在端点处取得,故C错误;若在上连续,则在上存在最大值和最小值,故D正确.故选:D.3.(2024高三·全国·专题练习)如图是f(x)的导函数f′(x)的图象,则f(x)的极小值点的个数为()小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.1B.2C.3D.4【答案】A【分析】根据极值点的定义,结合导函数的图象判断即可.【解析】由导函数f′(x)的图象知在x=-2处f′(-2)=0,且其两侧导数符号为左正右负,x=-2是极大值;在x=-1处f′(-1)=0,且其两侧导数符号为左负右正,x=-1是极小值;在x=-3处f′(2)=0,且其两侧导数符号为左正右负,x=2是极大值;所以f(x)的极小值点的个数为1,故选:A【点睛】本题主要考查极值点的定义以及数形结合思想的应用,属于基础题.4.(22-23高二上·河南许昌·期末)函数的导函数的图象如图所示,则()A.为函数的零点B.是函数的最小值C.函数在上单调递减D.为函数的极大值点小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【答案】C【分析】根据的图象,得到函数的单调区间,结合函数的单调性,极值点和极值,以及零点的概念,逐项判定,即可求解.【解析】由的图象,可得:当时,,单调递减;当时,,单调递增;当时,,单调递减;当时,,单调递增,A中,是函数的一个极大值点,不一定是函数的零点,所以A不正确;B中,是函数一个极小值,不一定是函数的最小值,所以B错误;C中,函数在上单调递减,所以C正确;D中,为函数的极小值点,所以D错误.故选:C.02求已知函数的极值5.(2024·黑龙江·模拟预测)已知函数.(1)当时,求在点处的切线方程;(2)讨论的单调性,并求出的极小值.【答案】(1)小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(2)在单调递减,在和单调递增;0.【分析】(1)欲求曲线在点处的切线方程,只需求出斜率和的值,利用直线的点斜式方程求解切线的方程;(2)利用函数的导数,求出函数的单调区间,从而求出函数的极值即可.【解析】(1)当时,,则,所以,又知,所以在点处的切线方程为.(2)因为,令,则或,所以当时,,当或时,.综上,在上单调递减,在和上单调递增;所以.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com6.(23-24高二下·湖南·期中)已知函数为奇函数.(1)求的值;(2)当时,求的单调区间和极值.【答案】(1)(2)答案见解析【分析】(1)由已知结合奇函数的定义即可求解;(2)先化简的解析式,对其求导,结合导函数与单调性及极值的关系即可求解.【解析】(1)定义域:.由已知:函数为奇函数,所以,即,解得.(2)由(1)得:,...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2015年高考数学真题(理科)(湖北自主命题).doc
2015年高考数学真题(理科)(湖北自主命题).doc
免费
21下载
2025年新高考数学复习资料考点12对数与对数函数(3种核心题型+基础保分练+综合提升练+拓展冲刺练)原卷版.docx
2025年新高考数学复习资料考点12对数与对数函数(3种核心题型+基础保分练+综合提升练+拓展冲刺练)原卷版.docx
免费
0下载
2000年云南高考文科数学真题及答案.doc
2000年云南高考文科数学真题及答案.doc
免费
5下载
2008年高考数学试卷(文)(湖南)(解析卷) .doc
2008年高考数学试卷(文)(湖南)(解析卷) .doc
免费
0下载
2014年上海市宝山区、静安区、杨浦区、青浦区四区联考高考数学二模试卷(文科).doc
2014年上海市宝山区、静安区、杨浦区、青浦区四区联考高考数学二模试卷(文科).doc
免费
0下载
2024年新高考数学复习资料第11讲 对数与对数函数(精讲)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
2024年新高考数学复习资料第11讲 对数与对数函数(精讲)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
免费
0下载
2010年高考数学试卷(理)(天津)(解析卷) (1).docx
2010年高考数学试卷(理)(天津)(解析卷) (1).docx
免费
0下载
2010年高考数学试卷(理)(新课标)(解析卷).doc
2010年高考数学试卷(理)(新课标)(解析卷).doc
免费
0下载
2001年新疆高考文科数学真题及答案.doc
2001年新疆高考文科数学真题及答案.doc
免费
28下载
高中数学高考数学10大专题技巧--专题30  证明数量关系型问题(教师版).docx
高中数学高考数学10大专题技巧--专题30 证明数量关系型问题(教师版).docx
免费
0下载
2013年高考数学试卷(文)(大纲版)(解析卷).pdf
2013年高考数学试卷(文)(大纲版)(解析卷).pdf
免费
0下载
2024版《大考卷》全程考评特训卷·数学【新教材】单元过关检测三.docx
2024版《大考卷》全程考评特训卷·数学【新教材】单元过关检测三.docx
免费
8下载
2024年高考数学试卷(新课标Ⅰ卷)(空白卷) (7).docx
2024年高考数学试卷(新课标Ⅰ卷)(空白卷) (7).docx
免费
0下载
2022年高考全国乙卷数学(理)真题.docx
2022年高考全国乙卷数学(理)真题.docx
免费
0下载
2016年高考数学试卷(文)(新课标Ⅱ)(空白卷) (1).pdf
2016年高考数学试卷(文)(新课标Ⅱ)(空白卷) (1).pdf
免费
0下载
2019年高考数学真题(文科)(新课标Ⅱ)(解析版).doc
2019年高考数学真题(文科)(新课标Ⅱ)(解析版).doc
免费
5下载
专题10  解三角形(解析版).docx
专题10 解三角形(解析版).docx
免费
0下载
精品解析:上海市浦东新区2023届高三二模数学试题(原卷版).docx
精品解析:上海市浦东新区2023届高三二模数学试题(原卷版).docx
免费
0下载
精品解析:江苏省常熟市2024届高三上学期阶段性抽测二数学试题(解析版).docx
精品解析:江苏省常熟市2024届高三上学期阶段性抽测二数学试题(解析版).docx
免费
0下载
2024年新高考数学复习资料重难点突破09 函数零点问题的综合应用 (八大题型)(解析版).docx
2024年新高考数学复习资料重难点突破09 函数零点问题的综合应用 (八大题型)(解析版).docx
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群