小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com第09讲函数的单调性与最值1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I,区间D⊆I,如果∀x1,x2∈D当x1<x2时,都有f(x1)<f(x2),那么就称函数f(x)在区间D上是增函数当x1<x2时,都有f(x1)>f(x2),那么就称函数f(x)在区间D上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.2.函数的最值前提设函数y=f(x)的定义域为I,如果存在实数M满足条件(1)∀x∈I,都有f(x)≤M;(2)∃x0∈I,使得f(x0)=M(1)∀x∈I,都有f(x)≥M;(2)∃x0∈I,使得f(x0)=M结论M为最大值M为最小值常用结论1.∀x1,x2∈D且x1≠x2,有>0(<0)或(x1-x2)[f(x1)-f(x2)]>0(<0)⇔f(x)在区间D上单调递增(减).2.在公共定义域内,增函数+增函数=增函数,减函数+减函数=减函数.3.函数y=f(x)(f(x)>0或f(x)<0)在公共定义域内与y=-f(x),y=的性相反.单调4.复合函数的单调性:函数y=f(u),u=φ(x)在函数y=f(φ(x))的定义域上,如果y=f(u)与u=φ(x)的单调性相同,那么y=f(φ(x))单调递增;如果y=f(u)与u=φ(x)的单调性相反,那么y=f(φ(x))单调递减.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com1、【2020年新高考2卷(海南卷)】已知函数在上单调递增,则的取值范围是()A.B.C.D.【答案】D【解析】【分析】首先求出的定义域,然后求出的单调递增区间即可.【详解】由得或所以的定义域为因为在上单调递增所以在上单调递增所以故选:D2、【2021年甲卷文科】下列函数中是增函数的为()A.B.C.D.【答案】D【解析】【分析】根据基本初等函数的性质逐项判断后可得正确的选项.【详解】对于A,为上的减函数,不合题意,舍.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com对于B,为上的减函数,不合题意,舍.对于C,在为减函数,不合题意,舍.对于D,为上的增函数,符合题意,故选:D.3、【2018年新课标1卷文科】设函数,则满足的x的取值范围是A.B.C.D.【答案】D【解析】【分析】分析:首先根据题中所给的函数解析式,将函数图像画出来,从图中可以发现若有成立,一定会有,从而求得结果.详解:将函数的图像画出来,观察图像可知会有,解得,所以满足的x的取值范围是,故选D.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com1、下列函数中,定义域是且为增函数的是A.BC1B.C.λD.EFPQ【答案】B【解析】四个函数的图象如下xyy=e-xOxyy=x3Oxyy=lnxOyy=|x|O显然B成立.2、函数,的值域是()A.B.C.D.【答案】A【解析】由题意,令,由于,故,故,由反比例函数的性质,在单调递增,故当时,;当时,,故函数在的值域为:.故选:A.3、已知函数,则A.是奇函数,且在R上是增函数B.是偶函数,且在R上是增函数C.是奇函数,且在R上是减函数D.是偶函数,且在R上是减函数【答案】A小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【解析】,得为奇函数,,所以在R上是增函数.选A.4、(2022·沭阳如东中学期初考试)(多选题)如果函数在(0,1)上是减函数,那么A.f(x)在(1,+∞)上递增且无最大值B.f(x)在(1,+∞)上递减且无最小值C.f(x)在定义域内是偶函数D.f(x)的图象关于直线x=1对称【答案】AD【解析】由|x-1|>0得,函数的定义域为{x|x≠1}.设g(x)=|x-1|=则在(-,1)上为减函数,在(1,+)上为增函数,且g(x)的图象关于直线x=1对称,所以f(x)的图象关于直线x=1对称,故选项D正确;因为f(x)=loga|x-1|在(0,1)上是减函数,所以a>1,所以在(1,+∞)上单调递增且无最大值,故选项A正确,选项B错误;又f≠f(x),所以选项C错误;综上,答案选AD.考向一函数单调性的证明与判断例1、讨论并用定义证明函数f(x)=在区间(-1,1)上的单调性.【解析】任取x1,x2∈(-1,1),且x1<x2,则f(x1)-f...