小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com重难点突破02圆锥曲线中的定点、定值问题1.已知椭圆过点;过原点且不与坐标轴垂直的直线与椭圆交于,两点.(1)求椭圆的标准方程;(2)记椭圆的右焦点为,分别延长,交椭圆于,两点,探究:直线是否过定点,若是,求出定点坐标;若不是,请说明理由.【解答】解:(1)设椭圆的方程为,,,,椭圆过点;可得,解得,,椭圆的标准方程为:;(2)设直线的方程为,,,,,,由,可得:,△,,,设直线的方程为,其中,,,由,可得:,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com△,,,设直线的方程为,其中,,,由,可得:,△,,,,,,,则,即,,整理得,又,,直线的方程为,过定点,.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com2.如图,过顶点在原点、对称轴为轴的抛物线上的点作斜率分别为,的直线,分别交抛物线于,两点.(1)求抛物线的标准方程和准线方程;(2)若,证明:直线恒过定点.【解答】(1)解:设抛物线的方程为,则代入,可得,抛物线的标准方程为,准线方程为;(2)证明:设,,,,则直线方程,方程,联立直线方程与抛物线方程,消去,得,①同理②而直线方程为,③,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com由①②③,整理得.由且,得,,故直线经过定点.3.平面直角坐标系中,是不在轴上一个动点,满足条件:过可作抛物线的两条切线,两切点连线与垂直,设直线与,轴的交点分别为,.(1)证明:是一个定点;(2)求的最小值.【解答】(1)证明:设以,为切点的切线方程为,联立抛物线方程,可得,由△,得,所以切线同理以,为切点的切线方程为,设,则,,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com直线的方程为,两切点连线与垂直,,,直线的方程为,为定点;(2)解:直线的方程为,代入直线的方程,求得,,,,如图,由对称性,不妨取,则,求的最小值为.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com4.已知是抛物线的焦点,是抛物线上一点,且.(1)求抛物线的方程;(2)直线与抛物线交于,两点,若为坐标原点),则直线是否会过某个定点?若是,求出该定点坐标,若不是,说明理由.【解答】解:(1)由抛物线的定义知,,抛物线的方程为:.(2)设的方程为:,代入有,设,,,,则,,,,的方程为:,恒过点.5.已知椭圆,右焦点的坐标为,且点在椭圆上.(Ⅰ)求椭圆的方程及离心率;(Ⅱ)过点的直线交椭圆于,两点(直线不与轴垂直),已知点与点关于轴对称,证明:直线恒过定点,并求出此定点坐标.【解答】解:(Ⅰ)由已知得,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com解得,椭圆的标准方程,椭圆的离心率.(Ⅱ)设,,,,则,,可设的直线方程为联立方程,整理得,,,,整理得,,,解得,的直线方程为:,直线恒过定点.6.已知两定点,,过动点的两直线和的斜率之积为.设动点的轨迹为.(1)求曲线的方程;(2)设,过的直线交曲线于、两点(不与、重合).设直线小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com与的斜率分别为,,证明为定值.【解答】解:(1)不妨设点,因为过动点的两直线和的斜率之积为,所以,整理得;(2)证明:不妨设直线的方程为,,,,,联立,消去并整理得,由韦达定理得,,则综上,为定值2.7.已知椭圆的离心率为,且过点.(1)求椭圆的方程;(2)若椭圆的上顶点为,过的两条直线,分别与交于异于点的,两小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com点,若直线,的斜率之和为,试判断直线是否过定点?若是,求出该定点;若不是,请说明理由.【解答】解:(1)因为椭圆的离心率为,所以,①因为点在椭圆上,所以,②又,③联立①②③,解得,,,则椭圆的方程为;(2)易知直线的斜率存在,不妨设直线的方程为,,,,又,联立,消去...