2024年新高考数学复习资料重难点突破02 圆锥曲线中的定点、定值问题(原卷版).docx本文件免费下载 【共10页】

2024年新高考数学复习资料重难点突破02 圆锥曲线中的定点、定值问题(原卷版).docx
2024年新高考数学复习资料重难点突破02 圆锥曲线中的定点、定值问题(原卷版).docx
2024年新高考数学复习资料重难点突破02 圆锥曲线中的定点、定值问题(原卷版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com重难点突破02圆锥曲线中的定点、定值问题1.已知椭圆过点;过原点且不与坐标轴垂直的直线与椭圆交于,两点.(1)求椭圆的标准方程;(2)记椭圆的右焦点为,分别延长,交椭圆于,两点,探究:直线是否过定点,若是,求出定点坐标;若不是,请说明理由.2.如图,过顶点在原点、对称轴为轴的抛物线上的点作斜率分别为,的直线,分别交抛物线于,两点.(1)求抛物线的标准方程和准线方程;(2)若,证明:直线恒过定点.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com3.平面直角坐标系中,是不在轴上一个动点,满足条件:过可作抛物线的两条切线,两切点连线与垂直,设直线与,轴的交点分别为,.(1)证明:是一个定点;(2)求的最小值.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com4.已知是抛物线的焦点,是抛物线上一点,且.(1)求抛物线的方程;(2)直线与抛物线交于,两点,若为坐标原点),则直线是否会过某个定点?若是,求出该定点坐标,若不是,说明理由.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com5.已知椭圆,右焦点的坐标为,且点在椭圆上.(Ⅰ)求椭圆的方程及离心率;(Ⅱ)过点的直线交椭圆于,两点(直线不与轴垂直),已知点与点关于轴对称,证明:直线恒过定点,并求出此定点坐标.6.已知两定点,,过动点的两直线和的斜率之积为.设动点的轨迹为.(1)求曲线的方程;(2)设,过的直线交曲线于、两点(不与、重合).设直线与的斜率分别为,,证明为定值.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com7.已知椭圆的离心率为,且过点.(1)求椭圆的方程;(2)若椭圆的上顶点为,过的两条直线,分别与交于异于点的,两点,若直线,的斜率之和为,试判断直线是否过定点?若是,求出该定点;若不是,请说明理由.8.已知椭圆的离心率,且椭圆经过点.(1)求椭圆的标准方程;(2)过点且斜率不为零的直线与椭圆交于,两点,关于轴的对称点为,求证:直线与轴交于定点.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com9.已知为椭圆上一点,点与椭圆的两个焦点构成的三角形面积为.(1)求椭圆的标准方程;(2)不经过点的直线与椭圆相交于,两点,若直线与斜率的乘积为,证明:直线必过定点,并求出这个定点坐标.10.已知以为焦点的抛物线的顶点为原点,点是抛物线的准线上任意一点,过点作抛物线的两条切线、,其中、为切点,设直线、的斜率分别为、.(1)求抛物线的标准方程;(2)若点的纵坐标为1,计算的值;(3)求证:直线过定点,并求出这个定点的坐标.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com11.已知抛物线经过点.(1)求抛物线的方程及其准线方程;(2)设为原点,过抛物线的焦点作斜率不为0的直线交抛物线于、两点,直线分别交直线,于点和点,求证:以为直径的圆经过定点.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com12.已知:平面内的动点到定点为和定直线距离之比为,(1)求动点的轨迹曲线的方程;(2)若直线与曲线的交点为,,点,当满足a_____时,求证:b_____.①;②;③直线过定点,并求定点的坐标.④直线的斜率是定值,并求出定值.请在①②里选择一个填在处,在③④里选择一个填在处,构成一个命题,在答题卡上陈述你的命题,并证明你的命题.13.已知双曲线的左右顶点分别为点,,其中,且双曲线过点.(1)求双曲线的方程;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(2)设过点的直线分别交的左、右支于,两点,过点作垂直于轴的直线,交线段于点,点满足.证明:直线过定点,并求出该定点.14.已知椭圆短轴的两个顶点与右焦点的连线构成等边三角形,过点且垂直于轴的直线被椭圆截得的线段长为1.(1)求椭圆的方程;(2)如图,过点的直线交椭圆于,两点,再过点作斜率为的直线交椭圆于...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2017年高考数学试卷(理)(新课标Ⅱ)(解析卷).pdf
2017年高考数学试卷(理)(新课标Ⅱ)(解析卷).pdf
免费
0下载
2003年江苏高考数学真题及答案.doc
2003年江苏高考数学真题及答案.doc
免费
10下载
专题35不等式第四缉(解析版)-备战2022年高中数学联赛之历年真题分类汇编(2015-2021).docx
专题35不等式第四缉(解析版)-备战2022年高中数学联赛之历年真题分类汇编(2015-2021).docx
免费
9下载
2025年新高考数学复习资料专题15 导数与函数的极值、最值(十一大题型+模拟精练)(解析版).docx
2025年新高考数学复习资料专题15 导数与函数的极值、最值(十一大题型+模拟精练)(解析版).docx
免费
0下载
思想04+运用转化与化归的思想方法解题(4大核心考点)(课件)-2024年高考数学二轮复习讲练测(新教材新高考).pptx
思想04+运用转化与化归的思想方法解题(4大核心考点)(课件)-2024年高考数学二轮复习讲练测(新教材新高考).pptx
免费
0下载
2023《微专题·小练习》·数学·理科·L-3专练46 高考大题专练(四) 立体几何的综合运用.docx
2023《微专题·小练习》·数学·理科·L-3专练46 高考大题专练(四) 立体几何的综合运用.docx
免费
13下载
高中2024版考评特训卷·数学·文科【统考版】点点练 30.docx
高中2024版考评特训卷·数学·文科【统考版】点点练 30.docx
免费
0下载
2025年新高考数学复习资料2025届高中数学一轮复习讲义:第八章 第6讲第3课时 综合问题(含解析).docx
2025年新高考数学复习资料2025届高中数学一轮复习讲义:第八章 第6讲第3课时 综合问题(含解析).docx
免费
0下载
2025年新高考数学复习资料第08讲 函数的奇偶性、对称性和周期性(精讲)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)原卷版.docx
2025年新高考数学复习资料第08讲 函数的奇偶性、对称性和周期性(精讲)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)原卷版.docx
免费
0下载
2024年新高考数学复习资料热点2-4 导数的切线问题(6题型+满分技巧+限时检测)(原卷版).docx
2024年新高考数学复习资料热点2-4 导数的切线问题(6题型+满分技巧+限时检测)(原卷版).docx
免费
0下载
1995年广西高考文科数学真题及答案.doc
1995年广西高考文科数学真题及答案.doc
免费
7下载
2021年高考数学试卷(上海)(秋考)(解析卷).pdf
2021年高考数学试卷(上海)(秋考)(解析卷).pdf
免费
0下载
高中2024版考评特训卷·数学·文科【统考版】点点练 2.docx
高中2024版考评特训卷·数学·文科【统考版】点点练 2.docx
免费
0下载
1992年重庆高考理科数学真题及答案.doc
1992年重庆高考理科数学真题及答案.doc
免费
28下载
2014年上海市浦东新区高考数学一模试卷(文科).doc
2014年上海市浦东新区高考数学一模试卷(文科).doc
免费
0下载
高中数学·选择性必修·第三册·(RJ-A版)课时作业WORD  课时作业(十一).docx
高中数学·选择性必修·第三册·(RJ-A版)课时作业WORD 课时作业(十一).docx
免费
15下载
2024年高考数学试卷(理)(全国甲卷)(解析卷) (5).docx
2024年高考数学试卷(理)(全国甲卷)(解析卷) (5).docx
免费
0下载
高中2022·微专题·小练习·数学【新高考】专练41.docx
高中2022·微专题·小练习·数学【新高考】专练41.docx
免费
0下载
2024版《大考卷》全程考评特训卷·数学【新教材】考点练57.docx
2024版《大考卷》全程考评特训卷·数学【新教材】考点练57.docx
免费
23下载
江西省吉安市青原区双校联盟2022-2023学年高一下学期期末考试数学试题.pdf
江西省吉安市青原区双校联盟2022-2023学年高一下学期期末考试数学试题.pdf
免费
8下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群