2024年新高考数学复习资料专题02 函数的单调性与最值(解析版).docx本文件免费下载 【共35页】

2024年新高考数学复习资料专题02 函数的单调性与最值(解析版).docx
2024年新高考数学复习资料专题02 函数的单调性与最值(解析版).docx
2024年新高考数学复习资料专题02 函数的单调性与最值(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题02函数的单调性与最值目录题型一:求单调区间...........................................................4题型二:判断函数的单调性.....................................................8题型三:函数单调性的应用——比较大小........................................11题型四:函数单调性的应用——解不等式........................................13题型五:函数单调性的应用——求参数..........................................16题型六:函数单调性的应用——求最值..........................................17知识点一、函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为D,如果对于定义域D内某个区间I上的任意两个自变量的值x1,x2当x1<x2时,都有f(x1)<f(x2),那么就称函数f(x)在区间I上单调递增.特别地,当函数f(x)在它的定义域上单调递增时,我们就称它是增函数当x1<x2时,都有f(x1)>f(x2),那么就称函数f(x)在区间I上单调递减.特别地,当函数f(x)在它的定义域上单调递减时,我们就称它是减函数知识点总结小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数y=f(x)在区间I上单调递增或单调递减,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间I叫做y=f(x)的单调区间.知识点二、函数的最值前提设函数y=f(x)的定义域为D,如果存在实数M满足:条件(1)∀x∈D,都有f(x)≤M;(2)∃x0∈D,使得f(x0)=M(1)∀x∈D,都有f(x)≥M;(2)∃x0∈D,使得f(x0)=M结论M为最大值M为最小值【常用结论与知识拓展】1.函数单调性的等价定义任意设x1,x2∈D(x1≠x2),则(1)>0(或(x1-x2)[f(x1)-f(x2)]>0)⇔f(x)在D上增;单调递(2)<0(或(x1-x2)[f(x1)-f(x2)]<0)⇔f(x)在D上.单调递减2.函数f(x)=ax+的性单调小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com若a>0,b<0,函在则数区间(-∞,0),(0,+∞)上是增函,若数a<0,b>0,函在则数区间(-∞,0),(0,+∞)上是函;若减数a>0,b>0,函在则数区间,上是函,在,减数区间上是增函.数特地,别“勾函对数”y=x+(a>0)的增单调递区间为(-∞,-),(,+∞);单调递减区是间[-,0),(0,].3.与函数运算有关的单调性结论(1)函数f(x)与f(x)+c(c常为数)具有相同的性.单调(2)k>0,函时数f(x)与kf(x)性相同;单调k<0,函时数f(x)与kf(x)性相反.单调(3)若f(x)恒正或恒,为值为负值则f(x)与具有相反的性.单调(4)若f(x),g(x)都是增(减)函,者都恒大于零,数则当两时f(x)·g(x)是增(减)函;者都数当两恒小于零,时f(x)·g(x)是减(增)函.数(5)在公共定域,增+增=增,+=.义内减减减(6)合函性的判方法:若函的性相同,函的合函复数单调断两个简单数单调则这两个数复数增函;若函的性相反,函的合函函.为数两个简单数单调则这两个数复数为减数简称“同增异减”.题型一:求单调区间【要点讲解】(1)图象法:如果f(x)是以图象给出的,或者f(x)的图象易作出,可由函数图象直观地写出它的单调区间.【例1】函数的单调递减区间为A.B.C.D.例题精讲小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【解答】解:,由题意令,由,解得:,故选:.【变式训练1】函数的递增区间是,.【解答】解:函数的图象如图所示:数形结合可得函数的增区间为,,故答案为:,.【变式训练2】函数的增区间为.【解答】解:因为函数在上单调递减,在上单调递增,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以函数的单调递增区间为,故答案为:.【变式训练3】函数的单调递减区间为.【解答】解:由,得,函数的定义域为,又内层函数的对称轴方程为,则内函数在上为增函数,且外层函数为定义域内的减函数,故复合函数的单调递减区间为.故答案为:.【变式训练4】函数的单调增区间是,.【解答】解:解,得,或;,解得;...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2022·微专题·小练习·数学·文科【统考版】专练20.docx
2022·微专题·小练习·数学·文科【统考版】专练20.docx
免费
24下载
2009年全国统一高考数学试卷(文科)(全国卷ⅰ)(含解析版).doc
2009年全国统一高考数学试卷(文科)(全国卷ⅰ)(含解析版).doc
免费
10下载
2025年新高考数学复习资料高考仿真重难点训练03  指对幂函数 函数的应用(原卷版).docx
2025年新高考数学复习资料高考仿真重难点训练03 指对幂函数 函数的应用(原卷版).docx
免费
0下载
2023年高考数学试卷(理)(全国乙卷)(解析卷) (1).pdf
2023年高考数学试卷(理)(全国乙卷)(解析卷) (1).pdf
免费
0下载
2024年新高考数学复习资料重难点突破01  数列中的数学文化与新定义(原卷版).docx
2024年新高考数学复习资料重难点突破01 数列中的数学文化与新定义(原卷版).docx
免费
0下载
2025年新高考数学复习资料重难点专题 2-1 函数与方程10类常考压轴小题(解析版)-2025届高考数学热点题型归纳与重难点突(新高考专用).docx
2025年新高考数学复习资料重难点专题 2-1 函数与方程10类常考压轴小题(解析版)-2025届高考数学热点题型归纳与重难点突(新高考专用).docx
免费
0下载
2024年高考押题预测卷数学(考试版A4) (2).docx
2024年高考押题预测卷数学(考试版A4) (2).docx
免费
27下载
2015年高考数学试卷(文)(安徽)(空白卷).doc
2015年高考数学试卷(文)(安徽)(空白卷).doc
免费
0下载
2019年高考数学试卷(理)(北京)(解析卷).doc
2019年高考数学试卷(理)(北京)(解析卷).doc
免费
0下载
2023《微专题·小练习》·数学·文科·L-2专练21.docx
2023《微专题·小练习》·数学·文科·L-2专练21.docx
免费
29下载
2016年北京市高考数学试卷(理科).doc
2016年北京市高考数学试卷(理科).doc
免费
1下载
2010年高考数学试卷(理)(北京)(空白卷).doc
2010年高考数学试卷(理)(北京)(空白卷).doc
免费
0下载
2024年新高考数学复习资料【专项精练】第04课 函数的概念及其表示-2024年新高考数学分层专项精练(原卷版).docx
2024年新高考数学复习资料【专项精练】第04课 函数的概念及其表示-2024年新高考数学分层专项精练(原卷版).docx
免费
0下载
2024版《微专题》·数学·新高考专练 48.docx
2024版《微专题》·数学·新高考专练 48.docx
免费
28下载
1990年山西高考文科数学真题及答案.doc
1990年山西高考文科数学真题及答案.doc
免费
13下载
2024年新高考数学复习资料2024年高考数学一轮复习(新高考版) 第8章 §8.12 圆锥曲线中定点与定值问题.docx
2024年新高考数学复习资料2024年高考数学一轮复习(新高考版) 第8章 §8.12 圆锥曲线中定点与定值问题.docx
免费
0下载
专题14+立体几何常见压轴小题全归纳(9大核心考点)(课件)-2024年高考数学二轮复习讲练测(新教材新高考).pptx
专题14+立体几何常见压轴小题全归纳(9大核心考点)(课件)-2024年高考数学二轮复习讲练测(新教材新高考).pptx
免费
0下载
2025年新高考数学复习资料2025届高中数学一轮复习讲义:第九章第10讲 抛物线(二)(含解析).docx
2025年新高考数学复习资料2025届高中数学一轮复习讲义:第九章第10讲 抛物线(二)(含解析).docx
免费
0下载
2019年上海市松江区、闵行区高考数学二模试卷(含解析版).doc
2019年上海市松江区、闵行区高考数学二模试卷(含解析版).doc
免费
0下载
2022年高考数学试卷(新高考Ⅰ卷)(解析卷) (6).docx
2022年高考数学试卷(新高考Ⅰ卷)(解析卷) (6).docx
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群
提交所需资料详情,我们来帮找资料