2024年新高考数学复习资料专题09 函数模型的应用(解析版).docx本文件免费下载 【共32页】

2024年新高考数学复习资料专题09 函数模型的应用(解析版).docx
2024年新高考数学复习资料专题09 函数模型的应用(解析版).docx
2024年新高考数学复习资料专题09 函数模型的应用(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题09函数模型的应用目录题型一:函数图像信息................................................................................................................3题型二:应用函数模型解决实际问题.........................................................................................8知识点一、六种常见的函数模型函数模型函数解析式一次函数模型f(x)=ax+b(a,b为常数,a≠0)二次函数模型f(x)=ax2+bx+c(a,b,c为常数,a≠0)指数函数模型f(x)=bax+c(a,b,c为常数,a>0且a≠1,b≠0)对数函数模型f(x)=blogax+c(a,b,c为常数,a>0且a≠1,b≠0)幂函数模型f(x)=axn+b(a,b,n为常数,a≠0,n≠0)“对勾”函数模型y=x+(a为常数,a>0)知识点二、三种函数模型性质比较y=axy=logaxy=xn知识点总结小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(a>1)(a>1)(n>0)在(0,+∞)上的单调性增函数增函数增函数增长速度越来越快越来越慢相对平稳图象的变化随x值增大,图象与y轴接近平行随x值增大,图象与x轴接近平行随n值变化而不同3.用函数建立数学模型解决实际问题的基本过程【常用结论与知识拓展】1.“直上升线”是速增,其增量固定不;匀长长变“指增数长”是先慢后快,其增量成长倍增加,常用“指爆炸数”形容;来“增对数长”是先快后慢,其增速度慢.长缓2.函数f(x)=x+(a>0)的性及最:质值(1)函在该数(-∞,-)和(,+∞)上增,在单调递[-,0)和(0,]上单调递.减(2)当x>0,时x=取最小时值2,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com当x<0,时x=-取最大-时值2.题型一:函数图像信息【要点讲解】(1)构建函数模型法:当根据题意易构建函数模型时,先建立函数模型,再结合模型选图象;(2)验证法:根据实际问题中两变量的变化快慢等特点,结合图象的变化趋势,验证是否吻合,从中排除不符合实际的情况,选择出符合实际情况的答案.【例1】血药浓度是指药物吸收后在血浆内的总浓度,当血药浓度介于最低有效浓度和最低中毒浓度之间时药物发挥作用.某种药物服用1单位后,体内血药浓度变化情况如图所示(服用药物时间对应时),则下列说法中不正确的是A.首次服药1单位后30分钟时,药物已经在发挥疗效B.若每次服药1单位,首次服药1小时药物浓度达到峰值C.若首次服药1单位,3小时后再次服药1单位,一定不会发生药物中毒D.每间隔5.5小时服用该药物1单位,可使药物持续发挥治疗作用【解答】解:由图象知,当服药半小时后,血药浓度大于最低有效浓度,故药物已发挥疗效,故正确;由图象可知,首次服药1小时药物浓度达到峰值,故正确;首次服药1单位,3小时后再次服药1单位,经过1小时后,血药浓度超过,例题精讲小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com会发生药物中毒,故错误;服用该药物5.5小时后血药浓度达到最低有效浓度,再次服药可使血药浓度超过最低有效浓度且不超过最低中毒浓度,药物持续发挥治疗作用,故正确.故选:.【变式训练1】在声学中,音量被定义为:,其中是音量(单位为,是基准声压为,是实际声音压强.人耳能听到的最小音量称为听觉下限阈值.经过研究表明,人耳对于不同频率的声音有不同的听觉下限阈值,如图所示,其中对应的听觉下限阈值为,对应的听觉下限阈值为,则下列结论正确的是A.音量同为的声音,的低频比的高频更容易被人们听到B.听觉下限阈值随声音频率的增大而减小C.的听觉下限阈值的实际声压为小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comD.的听觉下限阈值的实际声压为的听觉下限阈值实际声压的10倍【解答】解:对于,的低频对应图像的听觉下限阈值高于,的高频对应的听觉下限阈值低于,所以对比高频更容易被听到,故错误;对于,从图像上看,听觉下限阈值随声音频率的增大有减小也有增大,故错误;对于,对应的听觉下限阈值为,令,此时,故错误;对于,的听觉下限阈值为,令,此时,所以的听觉下限阈值的实际声...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2015年高考数学试卷(理)(安徽)(解析卷).pdf
2015年高考数学试卷(理)(安徽)(解析卷).pdf
免费
0下载
2024年新高考数学复习资料专题8.6 抛物线(解析版).docx
2024年新高考数学复习资料专题8.6 抛物线(解析版).docx
免费
0下载
2024年新高考数学复习资料第14讲 函数的图象(原卷版).docx
2024年新高考数学复习资料第14讲 函数的图象(原卷版).docx
免费
0下载
2025届高中数学一轮复习课件:第五章 第6讲 第1课时正、余弦定理(共77张ppt).pptx
2025届高中数学一轮复习课件:第五章 第6讲 第1课时正、余弦定理(共77张ppt).pptx
免费
0下载
《五年高考题分类训练》数学(2019-2023)专题七 复数.docx
《五年高考题分类训练》数学(2019-2023)专题七 复数.docx
免费
18下载
2024年新高考数学复习资料专题03  正余弦定理及其应用(原卷版).docx
2024年新高考数学复习资料专题03 正余弦定理及其应用(原卷版).docx
免费
0下载
2025年新高考数学复习资料8.2 空间点、线、面的位置关系(含答案).docx
2025年新高考数学复习资料8.2 空间点、线、面的位置关系(含答案).docx
免费
0下载
2008年高考数学试卷(文)(四川)(非延考区)(解析卷).pdf
2008年高考数学试卷(文)(四川)(非延考区)(解析卷).pdf
免费
0下载
精品解析:上海市徐汇区2023届高三二模数学试题(原卷版).docx
精品解析:上海市徐汇区2023届高三二模数学试题(原卷版).docx
免费
0下载
2021年高考数学试卷(文)(全国乙卷)(新课标Ⅰ)(解析卷).pdf
2021年高考数学试卷(文)(全国乙卷)(新课标Ⅰ)(解析卷).pdf
免费
0下载
高中数学·必修第一册(湘教版)课时作业(word)  课时作业(十八).docx
高中数学·必修第一册(湘教版)课时作业(word) 课时作业(十八).docx
免费
4下载
上海市普陀区2020年高三第一学期期末(一模)数学答案(word版).docx
上海市普陀区2020年高三第一学期期末(一模)数学答案(word版).docx
免费
0下载
2023《微专题·小练习》·数学·理科·L-3专练45 空间向量的应用.docx
2023《微专题·小练习》·数学·理科·L-3专练45 空间向量的应用.docx
免费
20下载
精品解析:江苏省南通市如皋市2024届高三下学期2月诊断测试数学试题(原卷版).docx
精品解析:江苏省南通市如皋市2024届高三下学期2月诊断测试数学试题(原卷版).docx
免费
0下载
2017年天津市高考数学试卷(文科).doc
2017年天津市高考数学试卷(文科).doc
免费
0下载
精品解析:上海市青浦区2023届高三一模数学试题(原卷版).docx
精品解析:上海市青浦区2023届高三一模数学试题(原卷版).docx
免费
0下载
【高考数学】备战2024年(新高考专用)专题12 概率(3大易错点分析+解题模板+举一反三+易错题通关)-备战2024年高考数学考试易错题(新高考专用)(解析版).docx
【高考数学】备战2024年(新高考专用)专题12 概率(3大易错点分析+解题模板+举一反三+易错题通关)-备战2024年高考数学考试易错题(新高考专用)(解析版).docx
免费
0下载
2024年新高考数学复习资料素养拓展19 等差数列中Sn的最值问题(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
2024年新高考数学复习资料素养拓展19 等差数列中Sn的最值问题(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
免费
0下载
2024年高考数学试卷(文)(全国甲卷)(解析卷) (2).docx
2024年高考数学试卷(文)(全国甲卷)(解析卷) (2).docx
免费
0下载
高中数学高考数学10大专题技巧--专题33  探究是否存在点型问题(教师版).docx
高中数学高考数学10大专题技巧--专题33 探究是否存在点型问题(教师版).docx
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群