2024年新高考数学复习资料专题09 数列的通项公式、数列求和及综合应用(练习)(原卷版).docx本文件免费下载 【共22页】

2024年新高考数学复习资料专题09 数列的通项公式、数列求和及综合应用(练习)(原卷版).docx
2024年新高考数学复习资料专题09 数列的通项公式、数列求和及综合应用(练习)(原卷版).docx
2024年新高考数学复习资料专题09 数列的通项公式、数列求和及综合应用(练习)(原卷版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题09数列的通项公式、数列求和及综合应用目录01等差、等比数列的基本量问题...................................................102证明等差等比数列.............................................................203等差等比数列的交汇问题.......................................................404数列的通项公式...............................................................405数列求和.....................................................................706数列性质的综合问题..........................................................1307实际应用中的数列问题........................................................1408以数列为载体的情境题........................................................1609数列的递推问题..............................................................1701等差、等比数列的基本量问题小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com1.(2023·重庆·高三统考阶段练习)已知数列满足,,记,则有()A.B.C.D.2.(2023·云南·怒江傈僳族自治州民族中学校联考一模)已知等比数列的前项和为,,,则()A.29B.31C.33D.363.(2023·安徽·高三校联考阶段练习)已知等差数列,其前项和为,若,且满足,,成等比数列,则等于()A.或B.C.D.24.(2023·辽宁·高三校联考阶段练习)在等比数列中,已知,,则()A.B.42C.D.5.(2023·全国·模拟预测)已知数列为等差数列,其前项和为,且,,则()A.63B.72C.135D.1446.(2023·安徽·高三校联考阶段练习)已知数列对任意满足,则小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com()A.3032B.3035C.3038D.304102证明等差等比数列7.(2023·黑龙江哈尔滨·高三哈师大附中校考期中)已知数列中,,(1)求证:数列是等差数列,并求出的通项公式;8.(2023·上海·高三上海市宜川中学校考期中)已知数列、的各项均为正数,且对任意,都有,,成等差数列,,,成等比数列,且,.(1)求证:数列是等差数列;(2)求数列、的通项公式.9.(2023·福建厦门·高三厦门外国语学校校考阶段练习)设是数列的前项和,已知小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1)求,并证明:是等比数列;(2)求满足的所有正整数.10.(2023·山东日照·高三校联考期末)已知数列的各项均为非零实数,其前项和为,且.(1)若,求的值;(2)若,,求证:数列是等差数列,并求其前项和.03等差等比数列的交汇问题11.(2023·高二课时练习)已知数列的前n项和为,若,,,成等差数列,则.12.(2023·广西·校联考模拟预测)已知数列的前n项和为.且,是公差为的等差数列,则.13.(2023•甲卷)记为数列的前项和.已知.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1)证明:是等差数列;(2)若,,成等比数列,求的最小值.14.(2023•乙卷)设是首项为1的等比数列,数列满足,已知,,成等差数列.(1)求和的通项公式;(2)记和分别为和的前项和.证明:.15.(2023·河南·高三校联考阶段练习)已知数列是公差为的等差数列,设,若存在常数,使得数列为等比数列,则的值为.04数列的通项公式16.(2023·全国·高三专题练习)已知数列满足,.求数列的通项公式.17.(2023·全国·高三专题练习)已知数列中,设,求数列的小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com通项公式.18.(2023·全国·高三专题练习)已知:,时,,求的通项公式.19.(2023·全国·高二专题练习)已知数列满足,求数列的通项公式.20.(2023·江西·高一统考期中)设数列的前n项和为Sn,满足,且成等差数列.(1)求的值;(2)求数列的通项公式.21.(2023·全国·高三专题练习)已知数列满足递推关系:,且,,求数列的通项公式.小学、初中、高中各种试...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
高中数学·必修第一册(湘教版)课时作业(word)  课时作业(七).docx
高中数学·必修第一册(湘教版)课时作业(word) 课时作业(七).docx
免费
15下载
2025年新高考数学复习资料考点巩固卷04 指对幂函数(六大考点)(原卷版).docx
2025年新高考数学复习资料考点巩固卷04 指对幂函数(六大考点)(原卷版).docx
免费
0下载
2022届江苏省苏州市八校高三下学期高考适应性检测(三模)数学试题(解析版).docx
2022届江苏省苏州市八校高三下学期高考适应性检测(三模)数学试题(解析版).docx
免费
0下载
2023《大考卷》二轮专项分层特训卷•数学·理科【统考版】仿真模拟专练(一).docx
2023《大考卷》二轮专项分层特训卷•数学·理科【统考版】仿真模拟专练(一).docx
免费
20下载
2017年高考数学试卷(文)(新课标Ⅲ)(空白卷).doc
2017年高考数学试卷(文)(新课标Ⅲ)(空白卷).doc
免费
0下载
精品解析:江苏省南京市、盐城市2024届高三上学期期末调研测试数学试题(解析版).docx
精品解析:江苏省南京市、盐城市2024届高三上学期期末调研测试数学试题(解析版).docx
免费
0下载
2012年高考数学试卷(理)(新课标)(空白卷) (7).pdf
2012年高考数学试卷(理)(新课标)(空白卷) (7).pdf
免费
0下载
2013年辽宁省高考数学试卷(理科)往年高考真题.doc
2013年辽宁省高考数学试卷(理科)往年高考真题.doc
免费
0下载
1998年四川高考文科数学真题及答案.doc
1998年四川高考文科数学真题及答案.doc
免费
4下载
2014年高考数学试卷(文)(新课标Ⅱ)(解析卷) (7).pdf
2014年高考数学试卷(文)(新课标Ⅱ)(解析卷) (7).pdf
免费
0下载
2007年高考数学真题(理科)(湖北自主命题).doc
2007年高考数学真题(理科)(湖北自主命题).doc
免费
3下载
2018年高考数学试卷(理)(新课标Ⅱ)(解析卷) (10).pdf
2018年高考数学试卷(理)(新课标Ⅱ)(解析卷) (10).pdf
免费
0下载
2021年天津市河北区普通高中学业水平合格性模拟检测数学试题(含答案).pdf
2021年天津市河北区普通高中学业水平合格性模拟检测数学试题(含答案).pdf
免费
6下载
2010年高考数学试卷(文)(大纲版Ⅱ,全国卷Ⅱ)(解析卷) (2).pdf
2010年高考数学试卷(文)(大纲版Ⅱ,全国卷Ⅱ)(解析卷) (2).pdf
免费
0下载
2014年高考数学试卷(理)(广东)(解析卷).doc
2014年高考数学试卷(理)(广东)(解析卷).doc
免费
0下载
2024年新高考数学复习资料押上海高考13-16题(集合、不等式、函数、数列、立体几何、圆锥曲线、概率与统计)原卷版.docx
2024年新高考数学复习资料押上海高考13-16题(集合、不等式、函数、数列、立体几何、圆锥曲线、概率与统计)原卷版.docx
免费
0下载
2025年新高考数学复习资料2025届高中数学一轮复习练习:第九章限时跟踪检测(五十八) 最值与范围问题(含解析).docx
2025年新高考数学复习资料2025届高中数学一轮复习练习:第九章限时跟踪检测(五十八) 最值与范围问题(含解析).docx
免费
0下载
1997年辽宁高考理科数学真题及答案.doc
1997年辽宁高考理科数学真题及答案.doc
免费
29下载
2020年高考数学试卷(文)(新课标Ⅱ)(解析卷).pdf
2020年高考数学试卷(文)(新课标Ⅱ)(解析卷).pdf
免费
0下载
2024年高考数学试卷(新课标Ⅰ卷)(解析卷).pdf
2024年高考数学试卷(新课标Ⅰ卷)(解析卷).pdf
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群
提交所需资料详情,我们来帮找资料