2024年新高考数学复习资料专题7.5 空间向量与立体几何(解析版).docx本文件免费下载 【共25页】

2024年新高考数学复习资料专题7.5 空间向量与立体几何(解析版).docx
2024年新高考数学复习资料专题7.5 空间向量与立体几何(解析版).docx
2024年新高考数学复习资料专题7.5 空间向量与立体几何(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题7.5空间向量与立体几何目录题型一:空间向量的线性运算.....................................................................................................3题型二:共线、共面向量定理...................................................................................................10题型三:数量积运算..................................................................................................................15题型四:求夹角取值范围...........................................................................................................17知识点一、空间向量及其有关概念名称定义共线(平行)向量如果表示若干空间向量的有向线段所在的直线互相平行或重合,那么这些向量叫做共线向量或平行向量共面向量平行于同一个平面的向量,叫做共面向量共线向量定理对于任意两个空间向量a,b(b≠0),a∥b的充要条件是存在实数λ,使a=λb共面向量定理如果两个向量a,b不共线,则向量p与向量a,b共面的充要条件是存在唯一的有序实数对(x,y),使p=xa+yb空间向量如果三个向量a,b,c不共面,那么对任意一个空间向量p,存在唯一的有序实数组(x,y,z),使得p=xa+yb+zc知识点总结小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com基本定理知识点二、空间向量及其运算的坐标表示(1)空间向量运算的坐标表示:设a=(a1,a2,a3),b=(b1,b2,b3),则a+b=(a1+b1,a2+b2,a3+b3),a-b=(a1-b1,a2-b2,a3-b3),λa=(λa1,λa2,λa3),λ∈R,a·b=a1b1+a2b2+a3b3.(2)空间向量的平行、垂直、模与夹角公式的坐标表示:设a=(a1,a2,a3),b=(b1,b2,b3),则当b≠0时,a∥b⇔a=λb⇔a1=λb1,a2=λb2,a3=λb3(λ∈R);a⊥b⇔a·b=0⇔a1b1+a2b2+a3b3=0;|a|==;cos〈a,b〉==.(3)空间向量的坐标及两点间的距离公式:设P1(x1,y1,z1),P2(x2,y2,z2),则P1P2=(x2-x1,y2-y1,z2-z1),|P1P2|=.知识点三、用空间向量研究直线、平面的位置关系位置关系向量表示小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com直线l1,l2的方向向量分别为n1,n2l1∥l2n1∥n2⇒n1=λn2l1⊥l2n1⊥n2⇔n1·n2=0直线l的方向向量为n,平面α的法向量为ml∥αn⊥m⇔m·n=0l⊥αn∥m⇔n=λm平面α,β的法向量分别为n,mα∥βn∥m⇔n=λmα⊥βn⊥m⇔n·m=0题型一:空间向量的线性运算【要点讲解】用基向量表示指定向量的步骤:①结合已知向量和所求向量观察图形;②将已知向量和所求向量转化到三角形或平行四边形中;③利用三角形法则或平行四边形法则把所求向量用已知基向量表示出来.【例1】已知点,3,,,3,,,则点的坐标为A.,3,B.,,C.,6,D.,3,【解答】解:设,,,因为,3,,,3,,所以,,因为,所以,,,0,,例题精讲小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以,解得,即,3,.故选:.【变式训练1】在正四面体中,过点作平面的垂线,垂足为点,点满足,则A.B.C.D.【解答】解:在正四面体中,平面,为的中心,连接,则,故选:.【变式训练2】如图,在空间四边形中,,,,点满足,点为的中点,则小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.B.C.D.【解答】解:在空间四边形中,,,,,点为的中点,则.故选:.【变式训练3】在平行六面体中,点是线段上的一点,且,设,,,则A.B.C.D.【解答】解:由题意可得,故选:.【变式训练4】如图,在平行六面体中,是的中点,点在上,且,设,,.则小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.B.C.D.【解答】解:,,.因为是的中点,所以,又因为点在上,且,所以,所以.故选:.【变式训练5】如图,四棱锥的底面是矩形,设,,,是棱上一点,且,则,则小学、初中、高中各种试卷真题知识归纳文案合同PPT...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2022·微专题·小练习·数学·文科【统考版】专练20.docx
2022·微专题·小练习·数学·文科【统考版】专练20.docx
免费
24下载
2009年全国统一高考数学试卷(文科)(全国卷ⅰ)(含解析版).doc
2009年全国统一高考数学试卷(文科)(全国卷ⅰ)(含解析版).doc
免费
10下载
2025年新高考数学复习资料高考仿真重难点训练03  指对幂函数 函数的应用(原卷版).docx
2025年新高考数学复习资料高考仿真重难点训练03 指对幂函数 函数的应用(原卷版).docx
免费
0下载
2023年高考数学试卷(理)(全国乙卷)(解析卷) (1).pdf
2023年高考数学试卷(理)(全国乙卷)(解析卷) (1).pdf
免费
0下载
2024年新高考数学复习资料重难点突破01  数列中的数学文化与新定义(原卷版).docx
2024年新高考数学复习资料重难点突破01 数列中的数学文化与新定义(原卷版).docx
免费
0下载
2025年新高考数学复习资料重难点专题 2-1 函数与方程10类常考压轴小题(解析版)-2025届高考数学热点题型归纳与重难点突(新高考专用).docx
2025年新高考数学复习资料重难点专题 2-1 函数与方程10类常考压轴小题(解析版)-2025届高考数学热点题型归纳与重难点突(新高考专用).docx
免费
0下载
2024年高考押题预测卷数学(考试版A4) (2).docx
2024年高考押题预测卷数学(考试版A4) (2).docx
免费
27下载
2015年高考数学试卷(文)(安徽)(空白卷).doc
2015年高考数学试卷(文)(安徽)(空白卷).doc
免费
0下载
2019年高考数学试卷(理)(北京)(解析卷).doc
2019年高考数学试卷(理)(北京)(解析卷).doc
免费
0下载
2023《微专题·小练习》·数学·文科·L-2专练21.docx
2023《微专题·小练习》·数学·文科·L-2专练21.docx
免费
29下载
2016年北京市高考数学试卷(理科).doc
2016年北京市高考数学试卷(理科).doc
免费
1下载
2010年高考数学试卷(理)(北京)(空白卷).doc
2010年高考数学试卷(理)(北京)(空白卷).doc
免费
0下载
2024年新高考数学复习资料【专项精练】第04课 函数的概念及其表示-2024年新高考数学分层专项精练(原卷版).docx
2024年新高考数学复习资料【专项精练】第04课 函数的概念及其表示-2024年新高考数学分层专项精练(原卷版).docx
免费
0下载
2024版《微专题》·数学·新高考专练 48.docx
2024版《微专题》·数学·新高考专练 48.docx
免费
28下载
1990年山西高考文科数学真题及答案.doc
1990年山西高考文科数学真题及答案.doc
免费
13下载
2024年新高考数学复习资料2024年高考数学一轮复习(新高考版) 第8章 §8.12 圆锥曲线中定点与定值问题.docx
2024年新高考数学复习资料2024年高考数学一轮复习(新高考版) 第8章 §8.12 圆锥曲线中定点与定值问题.docx
免费
0下载
专题14+立体几何常见压轴小题全归纳(9大核心考点)(课件)-2024年高考数学二轮复习讲练测(新教材新高考).pptx
专题14+立体几何常见压轴小题全归纳(9大核心考点)(课件)-2024年高考数学二轮复习讲练测(新教材新高考).pptx
免费
0下载
2025年新高考数学复习资料2025届高中数学一轮复习讲义:第九章第10讲 抛物线(二)(含解析).docx
2025年新高考数学复习资料2025届高中数学一轮复习讲义:第九章第10讲 抛物线(二)(含解析).docx
免费
0下载
2019年上海市松江区、闵行区高考数学二模试卷(含解析版).doc
2019年上海市松江区、闵行区高考数学二模试卷(含解析版).doc
免费
0下载
2022年高考数学试卷(新高考Ⅰ卷)(解析卷) (6).docx
2022年高考数学试卷(新高考Ⅰ卷)(解析卷) (6).docx
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群
提交所需资料详情,我们来帮找资料