小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com大题04圆锥曲线圆锥曲线问题是高考的热点问题之一,多数情况在倒数第二题出现,难度为中高档题型。纵观近几年高考试卷,圆锥曲线的大题主要有以下几种类型:已知过定点的直线与圆锥曲线相交于不同两点,求直线方程或斜率、多边形面积或面积最值、证明直线过定点或点在定直线上等。各种类型问题结构上具有一定的特征,解答方法也有一定的规律可循。题型一:最值问题(2024·安徽合肥·统考一模)已知抛物线的焦点为,过点的直线与交于两点,过作的切线,交于点,且与轴分别交于点.(1)求证:;(2)设点是上异于的一点,到直线的距离分别为,求的最小值.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com求最值及问题常用的两种方法:(1)几何法:题中给出的条件有明显的几何特征,则考虑用几何图形性质来解决;(2)代数法:题中所给出的条件和结论的几何特征不明显,则可以建立目标函数,再求该函数的最值,求函数的最值常见的方法有基本不等式法、单调性法、导数法和三角换元法等。1.(2024·吉林·校联考模拟预测)已知椭圆的左、右焦点分别为,,过的直线与交于P,Q两点,的周长为8,焦距为.(1)求椭圆的方程;(2)若直线与圆相切,且与交于不同的两点R,S,求的取值范围.2.(2023·山西临汾·校考模拟预测)已知抛物线C的顶点为坐标原点O,焦点在x轴上,直线l:交C于M,Q两点,且.(1)求C的方程;(2)若点P是C的准线上的一点,过点P作C的两条切线PA,PB,其中A,B为切点,求点O到直线AB的距离的最大值.题型二:参数范围问题小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(2023·上海浦东新·高三建平中学校考阶段练习)已知分别是椭圆的左、右顶点,过点、斜率为的直线交椭圆于两个不同的点.(1)求椭圆的焦距和离心率;(2)若点落在以线段为直径的圆的外部,求的取值范围;(3)若,设直线分别交轴于点,求的取值范围.圆锥曲线的取范围问题1、利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围;2、利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系;3、利用隐含的不等关系建立不等式,从而求出参数的取值范围;4、利用已知的不等关系构造不等式,从而求出参数的取值范围;5、利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.1.(2023·四川成都·统考二模)已知,分别为椭圆的左、右焦点,与椭圆C有相同焦点的双曲线在第一象限与椭圆C相交于点P,且.(1)求椭圆C的方程;(2)设直线与椭圆C相交于A,B两点,O为坐标原点,且.若椭圆C上存在点E,使得四边形OAED为平行四边形,求m的取值范围.2.(2024·江西南昌·高三江西师大附中校考开学考试)已知抛物线:上一点的纵小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com坐标为3,点到焦点距离为5.(1)求抛物线的方程:(2)过点作直线交于A,B两点,过点A,B分别作C的切线与,与相交于点,过点A作直线垂直于,过点作直线垂直于,与相交于点E,、、、分别与轴交于点P、Q、R、S.记、、、的面积分别为、、、.若,求实数的取值范围.题型三:定值问题(2024·四川雅安·高三雅安中学校联考开学考试)已知椭圆的离心率为,且椭圆的短轴长为.(1)求椭圆的方程.(2)设是椭圆上第一象限内的一点,是椭圆的左顶点,是椭圆的上顶点,直线与轴相交于点,直线与轴相交于点.记的面积为,的面积为.证明:为定值.圆锥曲线的定值问题(1)解析几何中的定值问题是指某些几何量(线段长度,图形面积,角度,直线的斜率等)的大小或某些代数表达式的值和题目中的参数无关,不依参数的变化而变化,而始终是一个确定的值,求定值问题常见的解题方法有两种:法一、先猜后证(特例法):从特殊入手,求出定值,再证明这个定值与变量无关;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com法二、引起变量法(直接法):直接推理、计算,并...